Browse > Article
http://dx.doi.org/10.12989/aas.2015.2.1.001

Advanced numerical tool for composite woven fabric preforming  

Cherouat, Abel (University of Technology of Troyes, Charles Delaunay Institute/GAMMA3-INRIA Project Team)
Borouchaki, Houman (University of Technology of Troyes, Charles Delaunay Institute/GAMMA3-INRIA Project Team)
Publication Information
Advances in aircraft and spacecraft science / v.2, no.1, 2015 , pp. 1-16 More about this Journal
Abstract
In this paper, geometrical and mechanical approaches are proposed for the simulation of the draping of woven fabric onto complex parts. The geometrical discrete approach allows to define the ply shapes and fibres orientation in order to optimize the composite structural properties and the continuum meso-structural mechanical approach allows to take into account the mechanical properties of fibres and resin and the various dominating mode of deformation of woven fabrics during the forming process. Some numerical simulations of forming process are proposed and compared with the experimental results in order to demonstrate the efficiency of our approaches.
Keywords
woven fabric; draping; geometrical approach; continuum finite element analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Boisse, P., Buet, K., Gasser, A. and Launay, J. (2001), "Meso/macro-mechanical behaviour of textile reinforcements for thin composites", Compos. Sci. Tech., 61(3), 395-401.   DOI
2 Asthana, R., Kumar, A. and Dahotre, N.B. (2006), "Composites get in deep with new-generation engine", Reinf. Plast., 50 (11), 26-29.   DOI
3 Bannister, M. (2001), "Challenges for composites into the next millennium - a reinforcement perspective", Compos. Part A, 32, 901-10.   DOI
4 Boisse, P., Cherouat, A., Gelin, J.C. and Sabhi, H. (1995), "Experimental study and finite element simulation of a glass fiber fabric shaping process", Polym. Compos., 16(1), 83-95.   DOI
5 Campbell, F.C, (2004), Manufacturing processes for advanced composites, Elsevier Advanced Technology, Oxford.
6 Cherouat, A., Borouchaki, H. and Billoet, J.L. (2005), "Geometrical and mechanical draping of composite fabric", Eur. J. Comput. Mech., 14 (6-7), 693-708.
7 Cherouat, A., Borouchaki, H. and Giraud-Moreau, L. (2011), "Mechanical and geometrical approaches applied to composite fabric forming", Int. J. Mater. Form., DOI 10.1007/s12289-010-0692-5.   DOI
8 Cherouat, A. and Billoet, J.L. (2001), "Mechanical and numerical modelling of composite manufacturing processes deep-drawing and laying-up of thin pre-impregnated woven fabrics", J. Mat. Proc. Technol., 118, 460-471.   DOI
9 Cherouat, A. and Borouchaki, H. (2009), "Present state of the art of composite fabric forming: geometrical and mechanical approaches", Mater., 2(4), 1835-1857.   DOI
10 ElHami, A., Radi, B. and Cherouat, A. (2009), "Treatment of the composite fabric's shaping using a Lagrangian formulation", Math. Comput. Model., 49(7-8), 1337-1349.   DOI
11 Ivanov, I. and Tabiei, A. (2002), "Flexible woven fabric micromechanical material model with fiber reorientation", Mech. Adv. Mater. Struct., 9, 37-51.   DOI
12 Fan, J.P., Tang, C.Y., Tsui, C.P., Chan, L.C. and Lee, T.C. (2006), "3D finite element simulation of deep drawing with damage development", Int. J. Mach. Tool. Manufact., 46(9), 1035-1044.   DOI
13 Hancock, S.G. and Potter, K.D. (2005), "Inverse drape modelling-an investigation of the set of shapes that can be formed from continuous aligned woven fibre reinforcements", Compos. Part A: Appl. Sci. Manuf., 36(7), 947-953.   DOI
14 Hou, M., Ye, L. and Mai, Y.W. (1997), "Manufacturing process and mechanical properties of thermoplastic composite components", J. Mater. Proc. Technol., 63, 334-338.   DOI
15 Long, A.C. and Rudd, C.D. (1994), "A simulation of reinforcement deformation during the production of preform for liquid moulding processes", Proc. Inst. Mech. Eng. Part B J. Eng. Manu., 208, 269-278.
16 Mark, C. and Taylor, H.M. (1956), "The fitting of woven cloth to surfaces", J. Text. Inst. 47, 477-488.   DOI
17 Potluri, P.S., Sharma, S. and Ramgulam, R. (2001), "Comprehensive drape modelling for moulding 3D textile preforms", Compos. Part A: Appl. Sci. Manuf., 32(10), 1415-1424.   DOI
18 Prodromou, A.G., Lomov, S.V. and Verpoest, I. (2011), "The method of cells and the mechanical properties of textile composites", Compos. Struct., 93(4), 1290-1299.   DOI
19 Sharma, S.B. and Sutcliffe, M.P.F. (2004), "A simplified finite element model for draping of woven material", Compos. Part A, 35, 637-643   DOI
20 Robertson, R., Hsiue, E. and Yeh, G. (1984), "Fibre rearrangements during the moulding of continuous fibre composites", Polym. Compos., 5, 191-197.   DOI
21 Vanclooster, K., Lomov, S.V. and Verpoest, I. (2009), "Experimental validation of forming simulations of fabric reinforced polymers using an unsymmetrical mould configuration", Compos. Part A: Appl. Sci. Manuf., 40(4), 530-539.   DOI
22 Taha, I., Abdin, Y.S. and Ebeid, S. (2012), "Prediction of draping behavior of woven fabrics over doublecurvature moulds using finite element techniques", Int. J. Mater. Mech. Eng., 1, 25-31.
23 Lim, T.C. and Ramakrishna, S. (2002), "Modelling of composite sheet forming: a review", Compos. Part A: Appl. Sci. Manuf., 33, 515-537.   DOI
24 Trochu, F., Ruiz, E., Achim, V. and Soukane, S. (2006), "Advanced numerical simulation of liquid composite molding for process analysis and optimization", Compos. Part A: Appl. Sci. Manuf., 37, 890-902.   DOI   ScienceOn
25 Van Der Ween, F. (1991), "Algorithms for draping fabrics on doubly curved surfaces", Int. J. Numer. Meth. Eng., 31, 1414-1426.
26 Warby, M.K., Whiteman, J.R., Jiang, W.G., Warwick, P. and Wright, T. (2003), "Finite element simulation of thermoforming processes for polymer sheets", Math. Comput. Simul., 61, 209-218.   DOI
27 Xue, P., Peng, X. and Cao, J. (2003), "A non-orthogonal constitutive model for characterizing woven composites", Compos. Part A, 34, 183-193.   DOI