• Title/Summary/Keyword: geometric problems

Search Result 471, Processing Time 0.025 seconds

Nonlinear Analysis Method of the Reinforced Concrete Member Considering the Geometric and the Material Nonlinearities (기하비선형과 재료비선형을 동시에 고려한 철근콘크리트 부재의 비선형 해석)

  • Han, Jae-Ik;Lee, Kyung-Dong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.129-138
    • /
    • 2002
  • The purpose of this study is to propose the nonlinear analysis method which combines the nonlinear incremental method with the layered method to solve the problems due to the geometric and the material nonlinearities. As numerical analysis models, the reinforced concrete simple beam and the steel arch frame are used to verify the algorithm of the proposed nonlinear method. The results are gotten from the computation procedures. According to the results of this study, the fracture pattern of the beam according to the ratio of tensile steel and the strength of the concrete and the steel can be estimated by the proposed method. Therefore, the load-deflection curve of structure can be, exactly, depicted by the proposed method. Also, the rupture load, the site and the depth of crack of the beam can analytically be checked by the proposed method. In this respect, the proposed method contributes for the solving the stability problem of the actual structure.

A Study on Stable Grasping Control of Dual-fingers with Soft-Tips (소프트-팁이 장착된 듀얼-핑거의 안정적 파지 제어에 관한 연구)

  • 심재군;한형용;양순용;이병룡;안경관;김성수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.219-224
    • /
    • 2002
  • This paper aims to derive a mathematical model of the dynamics of handling tasks in robot finger which stable grasping and manipulates a rigid object with some dexterity. Firstly, a set of differential equation describing dynamics of the manipulators and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. Secondly, problems of controlling both the internal force and the rotation angle of the grasped object under the constraints of area-contacts of tight area-contacts are discussed. The effect of geometric constraints of area-contacts on motion of the overall system is analyzed and a method of computer simulation for overall system of differential-algebraic equations is presented. Thirdly, simulation results are shown and the effects of geometric constraints of area-contact is discussed. Finally, it is shown that even in the simplest case of dual single D.O.F manipulators there exists a sensory feedback from sensing data of the rotational angle of the object to command inputs to joint actuators and this feedback connection from sensing to action eventually realizes secure grasping of the object, provided that the object is of rectangular shape and motion is confined to a horizontal plane.

  • PDF

Development of Meshless Method Using Least-Squares Method with Geometric Conservation Law for Structural Dynamic Analysis (기하학적 보존을 만족하는 최소제곱법을 활용한 무격자 구조해석 기법 개발)

  • Sang Woo Lee;Jin Young Huh;Kyu Hong Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.67-74
    • /
    • 2023
  • A meshless technique using the geometric conservation least-squares method (GC-LSM) was devised to discretize the governing equation of linear elasticity. Although the finite-element method is widely used for structural analysis, a meshless method was developed because of its advantages in a moving grid system. This work is the preliminary phase for developing a fully meshless-based fluid-structure interaction solver. In this study, Cauchy's momentum equation was discretized in strong form using GC-LSM for the structural domain, and the Newmark beta method was used for time integration. The solver was validated in 1D, 2D, and 3D benchmarking problems. Static and dynamic results were obtained. The results are more accurate than those of analytic solutions.

Discrete construction of generalized derivative functions (일반화된 도함수의 이산적 구현)

  • Kim, Tae-Sik;Kim, Kyung-W.
    • Journal of Digital Contents Society
    • /
    • v.9 no.1
    • /
    • pp.109-116
    • /
    • 2008
  • The variation of real phenomena and shape of nature in our world is so complicated that some mathematical tools using the traditional geometric methods based on the Euclidean geometry and analytical differential method may be irrelevant or insufficient in some problems. Recently, to deal with these circumstances, one can use the fractal geometric method. As another measures, in this paper we introduce the non-integral order derivative function for the analytical method and construct to facilitate their calculation.

  • PDF

Shape offectting using the geometric properties of B -spline curve(1) -A Study on offsetting of B-spline control polygon- (B-스플라인 곡선의 기하특성을 이용한 형상 옵셋(1) -B-스플라인 제어 다각형 옵셋 기법의 연구-)

  • 정재현;김희중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.44-48
    • /
    • 1996
  • In manufacturing of exact products, the offsetting is required to transfer the design data of shape to manufacturing data. In offsetting the degeneracies are occurred, and these problems are mere difficult in freeform shapr manufacuring. This paper is using the geometric properties of B-spline curves to solve the degeneracy of offsetting and to generating of enhanced offsetting. The offsetting of B-spline control polygon spans generates exact control polygon of original shapes. This method is faster in generating offset curve than the normal offsetting, and the resulted offset curves are exact. The additional property of this method is using to control offset shape as B-spline curves. We believe that this method is as effective solution for modifying of offset curves.

  • PDF

Blank Design and Strain Prediction in Sheete Metal Forming Process (박판금속 성형공정에서의 블랭크 설계및 변형률 예측)

  • Lee, Choong-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1810-1818
    • /
    • 1996
  • A new finite elemetn approach is introduced for direct prediction of bland shapes and strain distributions from desired final shapes in sheet metal forming. The approach deals with the geometric compatibility of finite elements, plastic deformation theory, minimization of plastic work with constraints, and a proper initial guess. The algorithm developed is applied to cylindrical cup drawing, square cup drawing, and fron fender forming to confirm its validity by demonstratin reasonable accurate numerical results of each problems. Rapid calculation with this algorithm enables easy determination of various process variables for design of sheet metal forming process.

A Study on the Elastic-Plastic Contact Problem for Large Deformation (대변형 탄소성 접촉문제에 관한 연구)

  • 전병희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.11-26
    • /
    • 1992
  • In this research, a numerical algorithm has been developed, which can be applied to the large deformation and large displacement contact problems between angle change have been proposed considering the change in geometric shape and rate of contact force. A set of linear simultaneous equations is constructed by adding the geometric shape change and contact conditions to the original stiffness matrix. A new method to determine time increment has been proposed based on Euler method, in which the condition to prevent the contact bodies from penetrating and overrunning each other has been taken into consideration. Practical application to contact problem is extrusion in which bodies are sliding along the contact boundary.

  • PDF

Adaptive Structure of Modular Wavelet Neural Network (모듈화된 웨이블렛 신경망의 적응 구조)

  • 서재용;김용택;김성현;조현찬;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.247-250
    • /
    • 2001
  • In this paper, we propose an growing and pruning algorithm to design the adaptive structure of modular wavelet neural network(MWNN) with F-projection and geometric growing criterion. Geometric growing criterion consists of estimated error criterion considering local error and angle criterion which attempts to assign wavelet function that is nearly orthogonal to all other existing wavelet functions. These criteria provide a methodology that a network designer can constructs wavelet neural network according to one's intention. The proposed growing algorithm grows the module and the size of modules. Also, the pruning algorithm eliminates unnecessary node of module or module from constructed MWNN to overcome the problem due to localized characteristic of wavelet neural network which is used to modules of MWNN. We apply the proposed constructing algorithm of the adaptive structure of MWNN to approximation problems of 1-D function and 2-D function, and evaluate the effectiveness of the proposed algorithm.

  • PDF

The Singularity Analysis of the Casing Oscillator (케이싱 오실레이터의 특이점 해석)

  • 남윤주;배형섭;박명관
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.100-108
    • /
    • 2004
  • In this paper, the new casing oscillator, which is a construction machine and which structure is similar to that of a parallel manipulator with redundancy, is proposed. The singularity analysis of this machine is performed by two different methods. First, the singularities are found by the numerical method at configurations where the rank of the Jacobian matrix becomes deficient. The singularities are outside the workspace. To investigate the physical information on these configurations, the singularities are examined by the geometric method at configurations where the casing oscillator cannot resist the external forces and moments applied to the upper platform due to losing static equilibrium. The results of the geometric method are the same as those of the numerical method. It proves that the new casing oscillator is free from the singularity, which causes serious problems to a parallel manipulator.

Divide and conquer algorithm for a voronoi diagram of simple curves

  • Kim, Deok-Soo;Hwang, Il-Kyu;Park, Bum-Joo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.691-700
    • /
    • 1994
  • Voronoi diagram of a set of geometric entities on a plane such as points, line segments, or arcs is a collection of Voronoi polygons associated with each entity, where Voronoi polygon of an entity is a locus of point which is closer to the associated entity than any other entity. Voronoi diagram is one of the most fundamental geometrical construct and well-known for its theoretical elegance and the wealth of applications. Various geometric problems can be solved with the aid of Voronoi diagram. For example, the maximum tool diameter of a milling cutter for rough cutting in a pocket can be easily found, and the pocketing tool path can be efficiently generated from Voronoi diagram. In PCB design, the design rule checking can be easily done via Voronoi diagram, too. This paper discusses an algorithm to construct Voronoi diagram of a simple polygon which consists of simple curves such as line segments as well as arcs in a plane with O(nlogn) time complexity by employing the divide and conquer scheme.