• 제목/요약/키워드: geometric parameters

검색결과 1,149건 처리시간 0.023초

다구찌기법에 의한 연삭가공물의 형상오차 분석 및 최적화 (Analysis and Optimization of Geometric Error in Surface Grinding using Taguchi Method)

  • 지용주;황영모;윤문철;류인일;하만경
    • 한국기계가공학회지
    • /
    • 제3권4호
    • /
    • pp.13-19
    • /
    • 2004
  • This paper deals with the analysis of geometric error and the optimization of process parameters in surface grinding. Taguchi method which is one of the design of experiments has been introduced in achieving the aims. The process parameters were the grain size, the wheel speed, the depth of cut and the table speed. The effect of the process parameters on the geometric error was examined and an optimal set of the parameters was selected to minimize the geometric error within the controllable range of the used grinding machine. The reliability of the results was evaluated by the ANOVA.

  • PDF

Geometric Fitting of Parametric Curves and Surfaces

  • Ahn, Sung-Joon
    • Journal of Information Processing Systems
    • /
    • 제4권4호
    • /
    • pp.153-158
    • /
    • 2008
  • This paper deals with the geometric fitting algorithms for parametric curves and surfaces in 2-D/3-D space, which estimate the curve/surface parameters by minimizing the square sum of the shortest distances between the curve/surface and the given points. We identify three algorithmic approaches for solving the nonlinear problem of geometric fitting. As their general implementation we describe a new algorithm for geometric fitting of parametric curves and surfaces. The curve/surface parameters are estimated in terms of form, position, and rotation parameters. We test and evaluate the performances of the algorithms with fitting examples.

실험계획법을 이용한 연삭가공물의 형상오차 분석 (Geometric Error Analysis of Surface Grinding by Design of Experiments)

  • 지용주;곽재섭;하만경
    • 한국공작기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.1-8
    • /
    • 2004
  • Various controllable parameters of an experiment have influence on grinding process. In order to get good products with a high quality, these parameters should be considered whether each parameter has relations to the quality. This paper describes the use of the design of experiments to minimize geometric error in surface grinding. Controllable parameters for the design of experiments were selected as spindle speed, table speed, depth of cut and grain size. From the experimental results, a degree of influence between these parameters and the geometric error was evaluated. An optimal set of grinding conditions was obtained by means of analysis of variance(ANOVA).

Development of a Costing Model for Wooden Patterns of Casting Structures for Machine Tools

  • Seo, Han-Tae;Choi, Jin-Woo
    • 한국생산제조학회지
    • /
    • 제24권4호
    • /
    • pp.386-393
    • /
    • 2015
  • A study is carried out on investigation on pattern costs, identification of geometric parameters for the cost, and development of cost estimation models for casting patterns. Pattern costs for machine tool structures are collected and analyzed to identify the important geometric parameters that affect the costs. The parameters are used for the development of the costing models. It is found that the geometric parameters can be easily obtained from a CAD system and then the costing models estimate a pattern cost in a minimum time. The models are verified with the structures whose pattern cost was used for this study. It is expected that this costing models can evaluate the cost of casting structures of machine tools in search of a near-optimal design based on manufacturing cost and, for example, weight at the design stage.

Estimation algorithms of the model parameters of robotic manipulators

  • Ha, In-Joong;Ko, Myoung-Sam;Kwon, Seok-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집(한일합동학술편); 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.932-938
    • /
    • 1987
  • The dynamic equations of robotic manipulators can be derived from either Newton-Euler equation or Lagrangian equation. Model parameters which appear in the resulting dynamic equation are the nonlinear functions of both the inertial parameters and the geometric parameters of robotic manipulators. The identification of the model parameters is important for advanced robot control. In the previous methods for the identification of the model parameters, the geometric parameters are required to be predetermined, or the robotic manipulators are required to follow some special motions. In this paper, we propose an approach to the identification of the model parameters, in which prior knowledge of the geometric parameters is not necessary. We show that the estimation equation for the model parameters can be formulated in an upper block triangular form. Utilizing the special structures, we obtain a simplified least-square estimation algorithm for the model parameter identification. To illustrate the practical use of our method, a 4DOF SCARA robot is examined.

  • PDF

다구찌기법에 의한 형상오차 평가 및 최적화 (Evaluation and optimization of geometric error by using Taguchi method)

  • 지용주;곽재섭;하만경
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.298-303
    • /
    • 2004
  • parameters in surface grinding. Taguchi method which is one of the design of experiments has been introduced in achieving the aims. The process parameters were the grain size, the wheel speed, the depth of cut and the table speed. The effect of the process parameters on the geometric error was examined and an optimal set of the parameters was selected to minimize the geometric error within the controllable range of the used grinding machine. The reliability of the results was evaluated by the ANOVA.

  • PDF

잠수함의 설계 인자들에 대해 안정성 지수가 가지는 민감도 해석 (Sensitivity Analysis on the Stability of a Submarine Concerning its Design Parameters)

  • 여동진;윤현규;김연규;이창민
    • 대한조선학회논문집
    • /
    • 제43권4호
    • /
    • pp.521-528
    • /
    • 2006
  • In this study, we developed a new systematic approach to assess the influence of geometric parameter change on the horizontal and vertical stability indices. To do this, three phases of sensitivity analyses were carried out. First, typical geometric parameters were defined and their effects on hydrodynamic coefficients were assessed by the Sensitivity Analysis (SA) of the indirect method. Second, the effects of hydrodynamic coefficients on the stability indices were calculated. Finally, the sensitivities of geometric parameters on the stability indices were obtained by merging the outputs of two phases using chain rule. The developed approach cau contribute to a submarine designer to determine geometric parameters satisfying pre-requirements about stability systematically.

차륜/레일 기하학적 인자에 의한 등가답면구배 영향 분석 (Analysis on the Influence of Wheel/Rail Geometric Parameters on the Equivalent/Conicity)

  • 허현무;권성태
    • 한국철도학회논문집
    • /
    • 제8권5호
    • /
    • pp.490-494
    • /
    • 2005
  • The geometric parameters between wheel and rail change wheel/rail contact geometry characteristics, and this influence dynamic behavior of rolling stock. So, the selections of optimum geometric parameters between wheel and rail is important for planning of railway system. In this study, we have analyzed the influence of geometric parameters like wheel flange-back distance, gage, and rail inclination on the equivalent conicity relating to dynamic behavior. The analyses show the following results. The widening of wheel flange-back distanc, the decrement of gage increase the equivalent conicity and the increment of rail inclination show the sharp change of the equivalent conicity.

차륜/레일 기하학적 인자의 등가답면구배에 미치는 영향 (A study on the influence of wheel/rail geometric parameters to equivalent conicity)

  • 허현무;권성태;김형진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.430-434
    • /
    • 2004
  • The geometric parameters between wheel and rail change wheel/rail contact geometry characteristics, and this influence dynamic behavior of rolling stock. So, the selections of optimum geometric parameters between wheel and rail is important for planning of railway system. In this study, we have analyzed the influence of geometric parameters like wheel flange-back distance, gage, and rail inclination to the equivalent conicity relating dynamic behavior. The analyses show the following results. The widening of wheel flange-back distance increase the equivalent conicity, the widening of gage, rail inclination 1/20 compared with rail inclination 1/40 decrease the equivalent conicity.

  • PDF

토크비 개선을 위한 자속 장벽형 회전자 구조 동기 릴릭턴스 전동기의 설계 (Design of Flux Barrier type Synchronous Reluctance Motor to improve Saliency Ratio)

  • 장석명;박병임;이성호;이중호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.660-662
    • /
    • 2000
  • It is demonstrated that the torque performance of the flux barrier type synchronous reluctance motor(SynRM) can be improved in terms of geometric parameters. Torque ana power factor are related to the difference of inductances and the saliency ratio. And these inductance characteristics are determined by the geometric parameters of rotor: the number of layers. the width of iron to the width of flux barrier($K_w$). slot number and shape, airgap, bridge, etc. The relationship between geometric parameters. especially, $K_w$ and motor performance will be studied. This paper shows that torque and power factor are improved through redesign with considering geometric parameters. Performance comparisons of proto type SynRM and improved SynRM are given by FEA(Finite Element Analysis).

  • PDF