• 제목/요약/키워드: geometric dilution of precision

검색결과 19건 처리시간 0.026초

Base Station Placement for Wireless Sensor Network Positioning System via Lexicographical Stratified Programming

  • Yan, Jun;Yu, Kegen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권11호
    • /
    • pp.4453-4468
    • /
    • 2015
  • This paper investigates optimization-based base station (BS) placement. An optimization model is defined and the BS placement problem is transformed to a lexicographical stratified programming (LSP) model for a given trajectory, according to different accuracy requirements. The feasible region for BS deployment is obtained from the positioning system requirement, which is also solved with signal coverage problem in BS placement. The LSP mathematical model is formulated with the average geometric dilution of precision (GDOP) as the criterion. To achieve an optimization solution, a tolerant factor based complete stratified series approach and grid searching method are utilized to obtain the possible optimal BS placement. Because of the LSP model utilization, the proposed algorithm has wider application scenarios with different accuracy requirements over different trajectory segments. Simulation results demonstrate that the proposed algorithm has better BS placement result than existing approaches for a given trajectory.

Dilution of Precision 정보를 이용한 INS/GPS 결합시스템 위치오차 개선 (Improving INS/GPS Integrated System Position Error using Dilution of Precision)

  • 김현석;백승준;조윤철
    • 한국항행학회논문지
    • /
    • 제21권1호
    • /
    • pp.138-144
    • /
    • 2017
  • 본 논문에서는 INS/GPS결합 시스템에서 GPS가 기만신호 또는 지형지물에 의한 가시선이 제한되어 위성의 기하학적 배치가 저하되는 조건을 고려하였고, 통합항법 성능을 향상시키기 위한 방법을 제안하였다. 먼저 GPS의 DOP에 측정 공분산 이 연동되는 가변 공분산 확장 칼만필터(VCEKF)를 제시하였다. 그리고 몬테칼로 시뮬레이션을 통하여 EKF와 VCEKF를 사용한 통합항법 시스템의 항법성능을 분석하였다. DOP 값이 낮은 경우보다 DOP값이 높을 경우에 VCEKF가 확정 공분산을 사용하는 EKF보다 우수한 추정 성능을 보임을 확인할 수 있었다.

Dilution of Precision (DOP) Based Landmark Exclusion Method for Evaluating Integrity Risk of LiDAR-based Navigation Systems

  • Choi, Pil Hun;Lee, Jinsil;Lee, Jiyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권3호
    • /
    • pp.285-292
    • /
    • 2020
  • This paper introduces a new computational efficient Dilution of Precision (DOP)-based landmark exclusion method while ensuring the safety of the LiDAR-based navigation system that uses an innovation-based Nearest-Neighbor (NN) Data Association (DA) process. The NN DA process finds a correct landmark association hypothesis among all potential landmark permutations using Kalman filter innovation vectors. This makes the computational load increases exponentially as the number of landmarks increases. In this paper, we thus exclude landmarks by introducing DOP that quantifies the geometric distribution of landmarks as a way to minimize the loss of integrity performance that can occur by reducing landmarks. The number of landmarks to be excluded is set as the maximum number that can satisfy the integrity risk requirement. For the verification of the method, we developed a simulator that can analyze integrity risk according to the landmark number and its geometric distribution. Based on the simulation, we analyzed the relationship between DOP and integrity risk of the DA process by excluding each landmark. The results showed a tendency to minimize the loss of integrity performance when excluding landmarks with poor DOP. The developed method opens the possibility of assuring the safety risk of the Lidar-based navigation system in real-time applications by reducing a substantial amount of computational load.

인지 무선 네트워크에서의 베이지안 추론 기반 다중로봇 위치 추정 기법 연구 (Localization Method for Multiple Robots Based on Bayesian Inference in Cognitive Radio Networks)

  • 김동구;박준구
    • 제어로봇시스템학회논문지
    • /
    • 제22권2호
    • /
    • pp.104-109
    • /
    • 2016
  • In this paper, a localization method for multiple robots based on Bayesian inference is proposed when multiple robots adopting multi-RAT (Radio Access Technology) communications exist in cognitive radio networks. Multiple robots are separately defined by primary and secondary users as in conventional mobile communications system. In addition, the heterogeneous spectrum environment is considered in this paper. To improve the performance of localization for multiple robots, a realistic multiple primary user distribution is explained by using the probabilistic graphical model, and then we introduce the Gibbs sampler strategy based on Bayesian inference. In addition, the secondary user selection minimizing the value of GDOP (Geometric Dilution of Precision) is also proposed in order to overcome the limitations of localization accuracy with Gibbs sampling. Via the simulation results, we can show that the proposed localization method based on GDOP enhances the accuracy of localization for multiple robots. Furthermore, it can also be verified from the simulation results that localization performance is significantly improved with increasing number of observation samples when the GDOP is considered.

랜드마크 기반 비전항법의 오차특성을 고려한 INS/비전 통합 항법시스템 (INS/Vision Integrated Navigation System Considering Error Characteristics of Landmark-Based Vision Navigation)

  • 김영선;황동환
    • 제어로봇시스템학회논문지
    • /
    • 제19권2호
    • /
    • pp.95-101
    • /
    • 2013
  • The paper investigates the geometric effect of landmarks to the navigation error in the landmark based 3D vision navigation and introduces the INS/Vision integrated navigation system considering its effect. The integrated system uses the vision navigation results taking into account the dilution of precision for landmark geometry. Also, the integrated system helps the vision navigation to consider it. An indirect filter with feedback structure is designed, in which the position and the attitude errors are measurements of the filter. Performance of the integrated system is evaluated through the computer simulations. Simulation results show that the proposed algorithm works well and that better performance can be expected when the error characteristics of vision navigation are considered.

랜드마크 기반 비전항법시스템에서 랜드마크의 기하학적 배치에 대한 3차원 항법오차 (Three-dimensional Navigation Error for Landmarks' Geometry in Landmark-based Vision Navigation Systems)

  • 김영선;황동환
    • 전기학회논문지
    • /
    • 제63권8호
    • /
    • pp.1104-1110
    • /
    • 2014
  • This paper investigates geometric effect of landmarks on three-dimensional navigation error in landmark-based vision navigation systems. Dilution of precision is derived for landmark measurement error on the focal plane of the camera and separately expressed in position DOP and attitude DOP. Values of DOP are observed for various configurations of landmarks.

공공기준점 측량에 적용을 위한 VRS(가상기준점) 방식의 Network-RTK 정확도 분석 (Analysis of Network-RTK(VRS) Positioning Accuracy for Surveying Public Control Point)

  • 한중희;권재현;홍창기
    • 대한공간정보학회지
    • /
    • 제18권2호
    • /
    • pp.13-20
    • /
    • 2010
  • 현재 국토지리정보원은 전국 44개의 상시관측소를 이용하여 VRS 서비스를 제공하고 있으며 이를 이용하여 짧은 시간 동안 취득된 자료의 처리를 통해 높은 위치정밀도의 획득이 가능하다. 그러나 공공기준점 측량을 위한 VRS 측량의 가용성 분석은 미비한 상태이다. 따라서 본 연구에서는 다양한 환경에서 데이터를 취득하여 공공기준점 측량에 대해 적용하기 위한 VRS 측량의 정확도를 분석하였다. 그 결과 85%의 데이터가 4cm 이내의 수평오차가 나타남으로써 VRS 측량에 적용할 수 있다고 판단되었고 좌표의 정확도를 판별하는 인자로 GDOP(Geometric Dilution of Precision)보다는 추정된 좌표의 분산을 나타내는 PQ(Position Quality)를 이용하는 것이 효율적임을 알수 있었다. 또한, 현재 대표적인 VRS 장비회사인 TRIMBLE, MAGELLAN, LEICA, TOPCON의 장비의 정밀도를 비교분석한 결과 수평위치의 표준편차가 3cm 미만으로 나타났으며, 회사 장비 별 정밀도는 비슷한 것으로 확인 되었으며, 공공기준점 측량에 VRS 측량을 적용하여도 무방하다고 사료된다.

Position DOP Analysis for Sensor Placement in the TDOA-based Localization System

  • Lim, Deok-Won;Kang, Hee-Won;Lee, Sang-Jeong;Hwang, Dong-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.1009-1013
    • /
    • 2012
  • A relationship between the sensor placement and the PDOP (Position Dilution of Precision) is derived in the TDOA-based localization system. And the geometric condition of the sensor placement is analyzed in order to get a minimum PDOP based on the derived relationship. Through computer simulations, effect of the sensor placement on the PDOP is observed.

Geometric Sensitivity Index for the GNSS Using Inner Products of Line of Sight Vectors

  • Won, Dae Hee;Ahn, Jongsun;Sung, Sangkyung;Lee, Chulsoo;Bu, Sungchun;Jang, Jeagyu;Lee, Young Jae
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권3호
    • /
    • pp.437-444
    • /
    • 2015
  • Satellite selection and exclusion techniques have been applied to the global navigation satellite system (GNSS) with the aim of achieving a balance between navigational performance and computational efficiency. Conventional approaches to satellite selection based on the best dilution of precision (DOP) are excessively computational and complicated. This paper proposes a new method that applies a geometric sensitivity index of individual GNSS satellites. The sensitivity index is derived using the inner product of the line of sight (LOS) vector of each satellite. First, the LOS vector is computed, which accounts for the geometry between the satellite and user positions. Second, the inner product of each pair of LOS vectors is calculated, which indicates the proximities of the satellites to one another. The proximity can be determined according to the sensitivity of each satellite. A post-processing test was conducted to verify the reliability of the proposed method. The proposed index and the results of a conventional approach that measures the dilution of precision (DOP) were compared. The test results demonstrate that the proposed index produces results that are within 96% of those of the conventional approach and reduces the computational burden. This index can be utilized to estimate the sensitivity of individual satellites, obtaining a navigation solution. Therefore, the proposed index applies to satellite selection and exclusion as well as to the sensitivity analyses of multiple GNSS applications.

시선각 측정기반 비전항법시스템에서 랜드마크의 기하학적 배치에 대한 2차원 항법오차 (Two-Dimensional Navigation Error for Geometry of Landmark in Line-Of-Sight Measurement Based Vision Navigation System)

  • 김영선;지현민;황동환
    • 전기학회논문지
    • /
    • 제61권3호
    • /
    • pp.479-484
    • /
    • 2012
  • Geometric effect of landmarks to the navigation error is investigated in the two-dimensional line-of-sight measurement based vision navigation system. DOP is derived between line-of-sight measurement error and navigation solution error. For cases of three landmarks in an area, variations of the DOP were observed through computer simulations. Vision navigation system experiments were performed for the cases. Simulation and experimental results show that navigation solution errors have similar trend to DOP values of the simulation.