• Title/Summary/Keyword: geomagnetic

Search Result 386, Processing Time 0.022 seconds

A Review on the Applicability of Geomagnetic Field-Based Indoor Positioning in Construction Site (지구자기장 기반 실내측위기술의 건설현장 적용 가능성 검토)

  • Kim, Hyeonmin;Kim, Hyungjun;Lee, Changwoo;Lee, Changsu;Lim, Bada;Cho, Hunhee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.123-124
    • /
    • 2023
  • Despite the acuuracy, stability, and economic feasibility of geomagnetic field-based indoor positioning, its applicability in construction sites needs to be thoroughly discussed due to the issue of distortion of geomagnetic fields around ferromagnetic objects such as rebars. In this study, the possibility of applying the geomagnetic field-based indoor positioning in construction sites was reviewed through the Student's t-test after measuring the changes in geomagnetic field values depending on the presence or absence of rebars. The statistical analysis revealed that there is a high probability (over 80%) of significant changes in geomagnetic field values when measuring points are located within 60cm from the rebars. On the other hand, the probability of minimal changes in geomagnetic field values is over 90% when measuring points are located more than 60cm from the rebars. This suggests the application of geomagnetic-based indoor positioning in construction sites would be possible if the issue of distortion in geomagnetic field values near rebars within 60cm is resolved.

  • PDF

Wavelet Based Semblance and Eigenvalue Analysis for Geomagnetic Variation Related to Micro-Earthquakes in the Korean Peninsula

  • Ji, Yoon-Soo;Oh, Seok-Hoon;Kim, Ki-Yeon
    • Journal of the Korean earth science society
    • /
    • v.33 no.5
    • /
    • pp.408-421
    • /
    • 2012
  • The objective of this paper is to apply a newly developed wavelet-based semblance filtering and eigenvalue analysis to investigate the geomagnetic variations in some micro-earthquakes that had occurred in the Korean Peninsula. The wavelet-based filtering showed improved results in delineating the geomagnetic variations in relation to earthquake events from their background field. In addition, the eigenvalues analysis was also useful for the interpretation of three components geomagnetic fields during the earthquake events. The wavelet-based semblance analysis showed a prominent result for short-term geomagnetic variation related to the earthquake event, and the eigenvalue analysis was feasible to long-term geomagnetic variation. Considering the fact that the basement rock of the Korean Peninsula has a highly resistive electrical structure, it seems to be possible for small magnitude earthquakes to generate some distinguished geomagnetic variations.

Variations of Geomagnetic Field in Korea (우리나라의 지자기장의 변화)

  • 윤홍식
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.4
    • /
    • pp.331-338
    • /
    • 1999
  • This paper describes the variations of geomagnetic field by analyzing the geomagnetic observation data, which spanned the period from 1918 through 1944 and the global geomagnetic model in Korea. Geomagnetic data observed at Incheon in the period of 1918~1944 and global geomagnetic model (IGRF-95) were obtained from the World Geomagnetic Data Center. In this study, the variations of geomagnetic declination is estimated as $1^\circ{50'}$ from 1918 to 2000 and the variation rate is given as the nearest 1'20"/yr. The total variation of inclination is about 38' for 82 years and the variation rate is estimated as the nearest 27"/yr."/yr.;/yr.

  • PDF

GEOMAGNETIC FIELD VARIATIONS DURING SOLAR ECLIPSES AND THE GEOGRAPHIC LOCATION OF OBSERVING SITES

  • Kim, Jung-Hee;Chang, Heon-Young
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.4
    • /
    • pp.119-127
    • /
    • 2018
  • We examine whether the solar eclipse effect is dependent on the geographic conditions under which the geomagnetic field variations are recorded. We concentrate our attention on the dependence of the solar eclipse effect on a number of factors, including, the magnitude of a solar eclipse (defined as the fraction of the angular diameter of the Sun being eclipsed), the magnetic latitude of the observatory, the duration of the observed solar eclipse at the given geomagnetic observatory, and the location of the geomagnetic observatory in the path of the Moon's shadow. We analyze an average of the 207 geomagnetic field variation data sets observed by 100 INTERMAGNET geomagnetic nodes, during the period from 1991 to 2016. As a result, it is demonstrated that (1) the solar eclipse effect on the geomagnetic field, i.e., an increase in the Y component and decreases in the X, Z and F componenets, becomes more distinct as the magnitude of solar eclipse increases, (2) the solar eclipse effect is most conspicuous when the modulus of the magnetic latitude is between $30^{\circ}$ and $50^{\circ}$, (3) the more slowly Moon's shadow passes the geomagnetic observatory, the more clear the solar eclipse effect, (4) the geomagnetic observatory located in the latter half of the path of Moon's shadow with respect to the position of the greatest eclipse is likely to observe a more clear signal. Finally, we conclude by stressing the importance of our findings.

The Health Hazard of Geomagnetic Field in Dwellings (주거에서 지자기장의 위해성에 관한 기초연구)

  • Han, Jong-Koo;Park, Tong-So
    • KIEAE Journal
    • /
    • v.5 no.1
    • /
    • pp.43-49
    • /
    • 2005
  • People grow up and build up most of their character through living in dwelling space and have relax and refresh at home. Creating healthy dwelling space is being considered very important in architectural planning and design for providing comfortable living environment and improving quality of life. One of the properties of the earth is that the earth has a magnetic field associated with it- the Geomagnetic field. The geomagnetic field is produced by a combination of crustal rocks, external electric current systems that surround the earth that surround the earth and currents induced in the outer layers of the earth by magnetic field variations. Human beings have evolved with the background of magnetic field, they are accustomed to living in its presence. Geopathic stress occurs at geopathic zones where the geomagnetic field is disturbed. Geopathic zones exhibit magnetic charges. Geopathic zones are characterized by variations in geomagnetism, for the geomagnetic field is not uniform but exhibits many highly localized distortions, some random, some fairly regular. These occur in geological faults, caves and underground water channel. Many research papers and experiments of the western countries indicates that the geomagnetic field affects the people and living organism in dwellings. Therefore, it is necessary to investigate the geomagnetic field and people's response in living space. In this study the Health Hazard of geomagneic field in dwelling are studied through literature survey of related science field.

Dependence of Quiet Time Geomagnetic Activity Seasonal Variation on the Solar Magnetic Polarity

  • Oh, Suyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.43-48
    • /
    • 2013
  • The geomagnetic activity shows the semiannual variation stronger in vernal and autumnal equinoxes than in summer and winter solstices. The semiannual variation has been explained by three main hypotheses such as Axial hypothesis, Equinoctial hypothesis, and Russell-McPherron Effect. Many studies using the various geomagnetic indices have done to support three main hypotheses. In recent, Oh & Yi (2011) examined the solar magnetic polarity dependency of the geomagnetic storm occurrence defined by Dst index. They reported that there is no dependency of the semiannual variation on the sign of the solar polar fields. This study examines the solar magnetic polarity dependency of quiet time geomagnetic activity. Using Dxt index (Karinen & Mursula 2005) and Dcx index (Mursula & Karinen 2005) which are recently suggested, in addition to Dst index, we analyze the data of three-year at each solar minimum for eight solar cycles since 1932. As a result, the geomagnetic activity is stronger in the period that the solar magnetic polarity is anti-parallel with the Earth's magnetic polarity. There exists the difference between vernal and autumnal equinoxes regarding the solar magnetic polarity dependency. However, the difference is not statistically significant. Thus, we conclude that there is no solar magnetic polarity dependency of the semiannual variation for quiet time geomagnetic activity.

Identifying Correction Range of Geomagnetic Field for Indoor Positioning of Workers at Construction Site (건설현장 내 작업자 실내측위를 위한 지구자기장 보정 범위 도출)

  • Kim, Hyeonmin;Ahn, Heejae;Lee, Changsu;Kim, Harim;Ko, Youngwoong;Cho, HunHee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.93-94
    • /
    • 2022
  • Although various studies about indoor positioning systems, such as beacon and Wifi, have been conducting for indoor positioning of workers at construction sites, these systems have limitations in terms of accuracy or economics. To overcome these limitations, geomagnetic field sequence-based indoor positioning technology can be a good alternative. However, it is necessary to correct the geomagnetic field near the construction material stocking area since the geomagnetic field can be distorted near construction materials such as rebars. Therefore, this study conducted an experiment for identifying correction range of geomagnetic field near the construction material stocking area. It was analyzed that the geomagnetic field should be corrected up to 60cm in the horizontal direction from the stocking point if the height of stocking area for rebars is 40cm or more. This study can be used for important reference for development of geomagnetic field sequence-based indoor positioning technology suitable for construction sites.

  • PDF

Geomagnetic Disturbances by Steel Skeletons (철골에 의한 지자기 교란)

  • 송승한;이문호;배성호;신현진
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.1
    • /
    • pp.32-37
    • /
    • 2001
  • Effects of steel-skeletons on the geomagnetic distribution in building have been studied through the simulation and measurement of geomagnetic distribution at floor surface. Geomagnetic distribution was simulated by the finite element method, and the vertical component Z of geomagnetic field on the floor surface was measured with the fluxgate-type magnetometer. Horizontal steel-skeletons have a little effect on the Z distribution, but vertical skeletons disturb severely the Z distribution and result in the localized geomagnetic disturbance. This disturbance becomes weakened by the bypassing soft-magnetic plate and/or floor.

  • PDF

Analysis of Geomagnetic Variations Related to Earthquakes Occurred in and Around the Korean Peninsula from 2009 until 2011 (지난 3년 동안(2009-2011) 한반도 지역에서 발생한 지진의 지자기 변동성 분석)

  • Oh, Seokhoon;Ji, Yoonsoo
    • Journal of the Korean earth science society
    • /
    • v.35 no.6
    • /
    • pp.429-438
    • /
    • 2014
  • Recent three years of geomagnetic data were analyzed using a method of Principal Component Analysis (PCA) and Wavelet Based Semblance Analysis to investigate any geomagnetic variation caused by earthquakes. This method predicts the geomagnetic variation using the PCA analysis of geomagnetic data, then compares the predicted geomagnetic field with the observation of finding any significant residual. Although it is well known that geomagnetic variation is related with earthquake, most analyses have been limited to some specific cases reflecting the correlation. In this study, we analyze seventeen cases of earthquakes that occurred in and around the Korean peninsula from 2009 to 2011 and that show the precursory and co-seismic relation between the earthquakes and geomagnetic variations.

A Study on Temporal Variations of Geomagnetic Transfer Functions and Polarization Values Obtained at Cheongyang Geomagnetic Observatory (청양 지자기관측소에서 획득된 지자기전달함수와 분극값의 시간변동성에 대한 연구)

  • Yang, Jun-Mo;Lee, Heui-Soon;Oh, Seok-Hoon
    • Journal of the Korean earth science society
    • /
    • v.30 no.7
    • /
    • pp.824-833
    • /
    • 2009
  • We analyzed a total of six months of geomagnetic data obtained at Cheonyang observatory, which is operated by Korean Meteorological Administration, to monitor earthquake precursors. Geomagnetic transfer functions (GTFs) and polarization values, which reflect the time-variations of the resistivity of subsurface, were estimated from 3-component geomagnetic data. The time-variant fluctuations were compared with the earthquake events occurred in the same period. Now that the daily GTFs show fairly irregular variations, we can not identify any correlation with the already occurred earthquakes and Kp index. On the other hand, we detect clear increases of the Ultra-Low-Frequency (ULF) band polarization values before the earthquakes, but the similar features are also observed even though the earthquake did not occur. This result may indicate that these time-variations are not just due to the earthquake precursor. For further understanding about these results, we need to investigate the relationship between the previous earthquake events and the geomagnetic data of other observatories.