• Title/Summary/Keyword: geological time concepts

Search Result 11, Processing Time 0.025 seconds

A Study on Elementary School Students' Perception of Geological Time Concepts: Focusing on the Sedimentary Rock Formation Process (초등학생들의 지질학적 시간 개념에 대한 인식 연구: 퇴적암 형성 과정을 중심으로)

  • Dong-Young Lee
    • Journal of the Korean earth science society
    • /
    • v.45 no.5
    • /
    • pp.482-492
    • /
    • 2024
  • This study aims to investigate how elementary school students understand the process of sedimentary rock formation based on their perception of geological time concepts. The research was conducted with 57 fourth-grade students from U Elementary School in B Metropolitan City. Data were collected using a modified and adapted version of the LIFT (The Landscape Identification and Formation Test) assessment tool developed by Jolley et al. (2012) and structured essay questions based on the interview framework used by Charles and McConnell (2018) on geological landscape formation. The qualitative analysis of the essay responses classified the students into three groups based on their expression of geological time concepts: the "Specific Time Concept" group, the "Vague Time Concept" group, and the "No Time Concept" group. Statistical verification was performed using the scores from short-answer questions about the sedimentary rock formation process. It was found that the "Specific Time Concept" group had a statistically significantly higher understanding of the sedimentary rock formation process compared to the "No Time Concept" group (p= .04). Additionally, instances of underestimation and overestimation of geological ages, as mentioned by Ault (1982), were observed in the specific cases. Furthermore, language networks were formed and centrality analyses were conducted based on the descriptive responses collected from each group. The analysis results showed that the "Specific Time Concept" group had a relatively good understanding of all processes involved in sedimentary rock formation, with geological time concepts well connected to the phenomena. The "Vague Time Concept" group did not have a well-connected understanding of the processes of deposition, compaction, cementation, lithification, and exposure but had a relatively good understanding of geological time concepts. The "No Time Concept" group explained the sedimentary rock formation process mainly focusing on deposition, compaction, and cementation, and had almost no understanding of geological time concepts. Additionally, community analysis using the centrality of time nodes showed that the "No Time Concept" group had difficulty associating the sedimentary rock formation process with the concept of time. Based on these conclusions, suggestions were made to provide insights into geological time.

Proposal of an Improved Concept Design for the Deep Geological Disposal System of Spent Nuclear Fuel in Korea

  • Lee, Jongyoul;Kim, Inyoung;Ju, HeeJae;Choi, Heuijoo;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.1-19
    • /
    • 2020
  • Based on the current high-level radioactive waste management basic plan and the analysis results of spent nuclear fuel characteristics, such as dimensions and decay heat, an improved geological disposal concept for spent nuclear fuel from domestic nuclear power plants was proposed in this study. To this end, disposal container concepts for spent nuclear fuel from two types of reactors, pressurized water reactor (PWR) and Canada deuterium uranium (CANDU), considering the dimensions and interim storage method, were derived. In addition, considering the cooling time of the spent nuclear fuel at the time of disposal, according to the current basic plan-based scenarios, the amount of decay heat capacity for a disposal container was determined. Furthermore, improved disposal concepts for each disposal container were proposed, and analyses were conducted to determine whether the design requirements for the temperature limit were satisfied. Then, the disposal efficiencies of these disposal concepts were compared with those of the existing disposal concepts. The results indicated that the disposal area was reduced by approximately 20%, and the disposal density was increased by more than 20%.

An Analysis of the Deep Geological Disposal Concepts Considering Spent Fuel Rods Consolidation (사용후핵연료봉 밀집을 고려한 심지층처분 개념 분석)

  • Lee, Jongyoul;Kim, Hyeona;Lee, Minsoo;Kim, Geonyoung;Choi, Heuijoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.287-297
    • /
    • 2014
  • For several decades, many countries operating nuclear power plants have been studying the various disposal alternatives to dispose of the spent nuclear fuel or high-level radioactive waste safely. In this paper, as a direct disposal of spent nuclear fuels for deep geological disposal concept, the rod consolidation from spent fuel assembly for the disposal efficiency was considered and analyzed. To do this, a concept of spent fuel rod consolidation was described and the related concepts of disposal canister and disposal system were reviewed. With these concepts, several thermal analyses were carried out to determine whether the most important requirement of the temperature limit for a buffer material was satisfiedin designing an engineered barrier of a deep geological disposal system. Based on the results of thermal analyses, the deposition hole distance, disposal tunnel spacing and heat release area of a disposal canister were reviewed. And the unit disposal areas for each case were calculated and the disposal efficiencies were evaluated. This evaluation showed that the rod consolidation of spent nuclear fuel had no advantages in terms of disposal efficiency. In addition, the cooling time of spent nuclear fuels from nuclear power plant were reviewed. It showed that the disposal efficiency for the consolidated spent fuel rods could be improved in the case that cooling time was 70 years or more. But, the integrity of fuels and other conditions due to the longer term storage before disposal should be analyzed.

A Study on the Effect of Elementary Pre-service Teachers on Conceptual Acquisition and Perception Change of Strata and Rocks after Geological Exploration (초등예비교사들의 지질답사를 통한 지층과 암석 개념습득 및 인식변화에 대한 연구)

  • Yong-seob Lee
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.16 no.3
    • /
    • pp.319-327
    • /
    • 2023
  • This study involved 22 students in one class of 4th year science intensive course at B College of Education. We investigated the changes in the acquisition of knowledge in the field of geology and the perception of geological exploration among pre-service teachers. For this study, a period of four weeks was designated for a semester to a geological field trip. For the geological exploration, the Geoparks of City B (Geumjeongsan Mountain, Amnam Park, Igidae, Dusong Peninsula, Jangsan, Taejongdae, and Hwangnyeongsan Mountain) were designated. The concept of geology and rocks has been extracted from the concepts that can be found in the Geopark. The composition of the group was composed of one group of four members autonomously. The other two of the pre-service teachers joined a group of friends with whom they had an affinity. After the geological field trip, the materials were organized by group and PPT presentations were made during the lecture time where all the members could listen. The extent to which the pre-service teachers acquired the concepts of geology and rocks after conducting the geological field trip was interpreted as the result of pre- and post-statistical processing. In addition, we interpreted what kind of perception the pre-service teachers had after the geological field trip as a result of the statistical processing before and after. Based on the results of the study, the following conclusions were drawn: First, it was effective for the pre-service teachers to acquire the concepts of strata and rocks after the geological field trip. The reason for this is that the experience of the pre-service teachers in conducting geological field trips has changed their perception of geological field trips. In addition, it is interpreted that these results were obtained because the pre-service teachers had a high level of interest in geology and rocks. Second, the pre-service teachers were able to gain confidence after the geological field trip. This reason is interpreted as the fact that they were able to gain confidence in geological exploration by exploring and experiencing the sites of the Geopark for each group.

Students' Perception of Continuous Change of the Nature

  • Lee, Sung-Ho;Jang, Myoung-Duk;Jeong, Jin-Woo;Lim, Cheong-Whan
    • Journal of the Korean earth science society
    • /
    • v.23 no.2
    • /
    • pp.132-139
    • /
    • 2002
  • One of the prime objectives of school science is to help the children learn science concepts and conceptual schemes that will help them understand and interpret their environment. One of the basic scientific concepts is 'Change -everything existing in universe is changing always'. The purpose of this study was to investigate the characteristics of elementary and secondary students' conception of change. The subjects for this study were 489 students in Korea; 111 fourth graders, 95 sixth graders, 140 seventh graders and 143 ninth graders. Four items - mountain, river, ground, sea -were used for investigating students conception of change because representing the nature world in elementary and secondary level. The subjects were asked to check whether each item was changing and to explain each their check. Students' explanations were classified by whether they were sound understanding geologically, or not. The rate of responses that each item was changing was compared by grades and the rate of geological explanations was also compared by grades. Because students' conceptions of change might were effected by time scale, the additional questions that asked students whether the present status of four items were equivalent to the that of several points of time. As a result, the rate of scientific answers and patterns of explanations were similar by grade and the rate of geological understandings was relatively low. The frequencies of concept of change were more dropped as the point of time was closer to present.

Scientific Visualization of Oceanic Data (GIS정보를 이용한 해양자료의 과학적 가시화)

  • Im, Hyo-Hyuc;Kim, Hyeon-Seong;Han, Sang-Cheon;Seong, Ha-Keun;Kim, Kye-Yeong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.195-196
    • /
    • 2006
  • Recently, there are increasing need to make a synthetic assessment about oceanic data which is collected over the various scientific field, in addition to just gathering oceanic data. In this study, we made a basic map using satellite image, aerial photo, multi-beam data, geological stratum data etc. And as well we are producing comprehensive SVT(Scientific Visualization Toolkit) which can visualize various kinds of oceanic data. These oceanic data include both survey data such as tidal height, tide, current, wave, water temperature, salinity, oceanic weather data and numeric modelling results such as ocean hydrodynamic model, wave model, erosion/sediment model, thermal discharged coastal water model, ocean water quality model. In this process, we introduce GIS(Geographic Information System) concepts to reflect time and spatial characteristics of oceanic data.

  • PDF

An Analysis on the Deep Geological Disposal Concepts Considering the Spent Fuel Length (사용후핵연료 길이에 따른 심지층 처분시스템 분석)

  • LEE, Jongyoul;KIM, Hyeona;LEE, Minsoo;CHOI, Heuijoo;KIM, Keonyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.3
    • /
    • pp.201-209
    • /
    • 2015
  • Currently, 23 nuclear power plants are in operation at Kori, Uljin, Younggwang and Wolsong site and a reference deep geological disposal system has been developed for the spent fuels generated by them. The reference spent fuel for this disposal system has 4.5wt% of initial enrichment, 55 GWd/MtU of burn-up, and 40 years of cooling time. In this paper, to improve disposal efficiency and economic feasibility, the characteristics of spent fuels from nuclear power plants, such as type and burn-up, were reviewed. A disposal canister concept for shorter length and relatively lower burn-up spent fuels than the reference spent fuels was developed. Based on this canister concept, thermal analyses were carried out and a deep geological disposal concept was proposed. Measures of disposal efficiency such as unit disposal area and disposal density were compared between this disposal system and the reference disposal system. Also, economic feasibility, such as the volume reduction of copper, cast iron, and bentonite, was analyzed and the results of these analyses showed that the disposal system proposed in this paper has an efficiency of at least 20%. These results could be used for establishing spent fuel management policy and designing practical disposal systems for spent fuels.

Development of Field Trip Program for Hantan River Geopark in Pocheon (포천 한탄강 지질공원에 대한 야외학습 프로그램 개발)

  • Jae-Yeon Kim;Jae-Hee Cho;Hak-Sung Kim
    • Journal of Science Education
    • /
    • v.46 no.2
    • /
    • pp.165-177
    • /
    • 2022
  • This study aims to develop a field trip program for the Hantan River geopark in Pocheon using Orion's field trip model. The selected learning sites were the Hwajeogyeon and Bidulginang Falls, famous geosites of the Hantan River geopark in Pocheon. The field trip program consisted of six preparatory units, two field trip units, and two summary units. The preparatory stage helped reduce the novelty space considering cognitive, psychological, and geographical factors. In the field trip stage, students acquire concepts linked to learning elements in the curriculum scientifically and encourage interest in science. In the summary stage, students organized the geological phenomena observed in the field and inferred the vicinity of the Pocheon Hantan River region. The field trip program was modified to give enough time for observation activities to increase students' interest in science and to connect concepts with learning elements in the curriculum in the outdoor learning phase to allow students' convergent thinking. Implementing the field trip program raises students' interest and attitude in science.

Comparison of Content related to 'Geology of the Korean Peninsula' presented in the Textbooks of the 2015 Revised Curriculum: Focused on Earth Science II and Korean Geography Textbooks (2015 개정 교육과정의 교과서에 제시된 '한반도의 지질' 내용 비교: 지구과학 II 및 한국지리 교과서를 중심으로)

  • Kyeong-Jin Park
    • Journal of the Korean earth science society
    • /
    • v.44 no.3
    • /
    • pp.236-252
    • /
    • 2023
  • Both Earth science II and Korean geography textbooks emphasize the importance of content related to 'geology of the Korean Peninsula'. This study aimed to analyze the differences in the content related to the 'geology of the Korean Peninsula' presented in the textbooks, and to find out whether these differences are consistent with the latest scientific knowledge in any inconsistencies are found. For this purpose, seven textbooks (four Earth science II and three Korean geography) published under the 2015 revised curriculum were selected as the subject of analysis, and the difference in the description of the tectonic provinces of the Korean Peninsula, geologic time scale, and explanatory texts of geological characteristics between Earth science II and Korean geography textbooks were compared. As a result of the analysis, there are some cases of inconsistencies between Earth science II and Korean geography textbooks in terms of terminologies, names, and distribution ranges related to the tectonic provinces of the Korean Peninsula. The Korean geography textbooks had inconsistencies in the geochronologic data of the rocks as they cited outdated data. In addition, inconsistencies were found in the explanatory texts describing the 'distribution of rocks on the Korean Peninsula', 'characteristics of the Pyeongan Supergroup', and 'great hiatus of the Paleozoic Era'. Both Earth science and Geography have many concepts in common, therefore, effort is needed to minimize the differences in content. It is important to select the content appropriately which should reflect the latest scientific knowledge and presents the concepts consistently.

A Qualitative Study on the Anthropocene Perception and Experience of Undergraduates Using Focus Group Interviews (FGI) (포커스 그룹 인터뷰(FGI)를 활용한 학부생들의 인류세 인식과 경험에 대한 질적 연구)

  • Chu, Sung-Kyung;Byeon, So-Yeon;Yoon, Hae-Gyung
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.5
    • /
    • pp.620-632
    • /
    • 2022
  • In order to prepare for the Anthropocene, this study aims to provide basic data on the direction of the Anthropocene liberal arts education by sharing experiences on anthropocene perception for undergraduates using the FGI analysis method. Interviews were conducted on 14 people who participated in liberal arts tutoring for about four months from October 2021 to January 2022, and as a result of confirming meaningful concepts according to qualitative analysis methods, a total of three topics, eight subcategories, and 16 sub-units were derived. "The advent of the new geological age" recognized that the anthrop tax was close to our lives, and it was time to predict the future through the meaning, seriousness, and development potential of the anthrop tax, and "Anthropocene Reorganization and Responsibility" emphasized the reorganization and responsibility of individuals, companies, and governments. The Direction of Human Tax Liberal Education proposed future basic liberal arts education, action practice for climate change, measures to overcome the anthropology using ICT technology, and various liberal arts education contents for a positive anthropology. In this regard, this study raised perception of the survival of mankind by in-depth exploration of the anthropocene in terms of liberal arts education, suggested the direction of future liberal arts education necessary in the anthropocene era, and suggested implications for the educational content and method.