• Title/Summary/Keyword: geological

Search Result 3,297, Processing Time 0.031 seconds

Physical Properties of Volcanic Rocks in Jeju-Ulleung Area as Aggregates (제주도 및 울릉도에서 산출되는 화산암의 골재로서의 물성 특징)

  • Byoung-Woon You;Chul-Seoung Baek;Kye-Young Joo
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.205-217
    • /
    • 2024
  • This study evaluated the physical characteristics and quality of volcanic rocks distributed in the Jeju Island-Ulleung Island area as aggregate resources. The main rocks in the Jeju Island area include conglomerate, volcanic rock, and volcanic rock. Conglomerate is composed of yellow-red or gray heterogeneous sedimentary rock, conglomerate, and encapsulated conglomerate in a state between lavas. Volcanic rocks are classified according to their chemical composition into basalt, trachybasalt, basaltic trachytic andesite, trachytic andesite, and trachyte. By stratigraphy, from bottom to top, Seogwipo Formation, trachyte andesite, trachybasalt (I), basalt (I), trachybasalt (II), basalt (II), trachybasalt (III, IV), trachyte, trachybasalt (V, VI), basalt (III), and trachybasalt (VII, VIII). The bedrock of the Ulleung Island is composed of basalt, trachyte, trachytic basalt, and trachytic andesite, and some phonolite and tuffaceous clastic volcanic sedimentary rock. Aggregate quality evaluation factors of these rocks included soundness, resistance to abrasion, absorption rate, absolute dry density and alkali aggregate reactivity. Most volcanic rock quality results in the study area were found to satisfy aggregate quality standards, and differences in physical properties and quality were observed depending on the area. Resistance to abrasion and absolute dry density have similar distribution ranges, but Ulleung Island showed better soundness and Jeju Island showed better absorption rate. Overall, Jeju Island showed better quality as aggregate. In addition, the alkaline aggregate reactivity test results showed that harmless aggregates existed in both area, but Ulleungdo volcanic rock was found to be more advantageous than Jeju Island volcanic rock. Aggregate quality testing is typically performed simply for each gravel, but even similar rocks can vary depending on their geological origin and mineral composition. Therefore, when evaluating and analyzing aggregate resources, it will be possible to use them more efficiently if the petrological-mineralological research is performed together.

Seismic Facies Classification of Igneous Bodies in the Gunsan Basin, Yellow Sea, Korea (탄성파 반사상에 따른 서해 군산분지 화성암 분류)

  • Yun-Hui Je;Ha-Young Sim;Hoon-Young Song;Sung-Ho Choi;Gi-Bom Kim
    • Journal of the Korean earth science society
    • /
    • v.45 no.2
    • /
    • pp.136-146
    • /
    • 2024
  • This paper introduces the seismic facies classification and mapping of igneous bodies found in the sedimentary sequences of the Yellow Sea shelf area of Korea. In the research area, six extrusive and three intrusive types of igneous bodies were found in the Late Cretaceous, Eocene, Early Miocene, and Quaternary sedimentary sequences of the northeastern, southwestern and southeastern sags of the Gunsan Basin. Extrusive igneous bodies include the following six facies: (1) monogenetic volcano (E.mono) showing cone-shape external geometry with height less than 200 m, which may have originated from a single monogenetic eruption; (2) complex volcano (E.comp) marked by clustered monogenetic cones with height less than 500 m; (3) stratovolcano (E.strato) referring to internally stratified lofty volcanic edifices with height greater than 1 km and diameter more than 15 km; (4) fissure volcanics (E.fissure) marked by high-amplitude and discontinuous reflectors in association with normal faults that cut the acoustic basement; (5) maar-diatreme (E.maar) referring to gentle-sloped low-profile volcanic edifices with less than 2 km-wide vent-shape zones inside; and (6) hydrothermal vents (E.vent) marked by upright pipe-shape or funnel-shape structures disturbing sedimentary sequence with diameter less than 2 km. Intrusive igneous bodies include the following three facies: (1) dike and sill (I.dike/sill) showing variable horizontal, step-wise, or saucer-shaped intrusive geometries; (2) stock (I.stock) marked by pillar- or horn-shaped bodies with a kilometer-wide intrusion diameter; and (3) batholith and laccoliths (I.batho/lac) which refer to gigantic intrusive bodies that broadly deformed the overlying sedimentary sequence.

Hydrochemistry, Isotopic Characteristics, and Formation Model Geothermal Waters in Dongrae, Busan, South Korea (부산 동래 온천수의 수리화학 및 동위원소 특성, 생성모델 연구)

  • Yujin Lee;Chanho Jeong;Yongcheon Lee
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.229-248
    • /
    • 2024
  • This investigated the hydrogeochemical and isotopic characteristics of geothermal waters, groundwaters, and surface waters in Dongrae-gu, Busan, South Korea, in order to determine the origins of the salinity components in the geothermal waters, and their formation mechanisms and heat sources The geothermal waters are Na-Cl-type, distinct from surrounding groundwaters (Na-HCO3- and, Ca-HCO3- (SO4, Cl)-type) and surface waters (Ca-HCO3(SO4, Cl)-type). This indicates the geothermal waters formed at depth as compared with the groundwaters. δ18O and δD values of the geothermal waters are relatively depleted as compared with the groundwaters, due to altitude effects and deep circulation of the geothermal waters. Helium and neon isotope ratios (3 He/4He and, 4He/20Ne) of the geothermal waters plot on a single mixing line between mantle (3He = 3.76~4.01%) and crust (4He = 95.99~96.24 %), indirectly suggesting that the heat source is due to the decay of radioactive elements in rocks. The geothermal reservoir temperatures were calculated using the silica-enthalpy and Giggenbach models, yielding values of 82~130℃, and the depth of the geothermal reservoir is estimated to be 1.7~2.9 km below the surface. The correlation between Cl/Na and Cl/HCO3 for the Dongrae geothermal waters requires the input of salty water. The supply of saline composition is interpreted due to the dissolution of residual paleo-seawater.

Spatio-Temporal Monitoring of Soil CO2 Fluxes and Concentrations after Artificial CO2 Release (인위적 CO2 누출에 따른 토양 CO2 플럭스와 농도의 시공간적 모니터링)

  • Kim, Hyun-Jun;Han, Seung Hyun;Kim, Seongjun;Yun, Hyeon Min;Jun, Seong-Chun;Son, Yowhan
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.2
    • /
    • pp.93-104
    • /
    • 2017
  • CCS (Carbon Capture and Storage) is a technical process to capture $CO_2$ from industrial and energy-based sources, to transfer and sequestrate impressed $CO_2$ in geological formations, oceans, or mineral carbonates. However, potential $CO_2$ leakage exists and causes environmental problems. Thus, this study was conducted to analyze the spatial and temporal variations of $CO_2$ fluxes and concentrations after artificial $CO_2$ release. The Environmental Impact Evaluation Test Facility (EIT) was built in Eumseong, Korea in 2015. Approximately 34kg $CO_2$ /day/zone were injected at Zones 2, 3, and 4 among the total of 5 zones from October 26 to 30, 2015. $CO_2$ fluxes were measured every 30 minutes at the surface at 0m, 1.5m, 2.5m, and 10m from the $CO_2$ releasing well using LI-8100A until November 13, 2015, and $CO_2$ concentrations were measured once a day at 15cm, 30cm, and 60cm depths at every 0m, 1.5m, 2.5m, 5m, and 10m from the well using GA5000 until November 28, 2015. $CO_2$ flux at 0m from the well started increasing on the fifth day after $CO_2$ release started, and continued to increase until November 13 even though the artificial $CO_2$ release stopped. $CO_2$ fluxes measured at 2.5m, 5.0m, and 10m from the well were not significantly different with each other. On the other hand, soil $CO_2$ concentration was shown as 38.4% at 60cm depth at 0m from the well in Zone 3 on the next day after $CO_2$ release started. Soil $CO_2$ was horizontally spreaded overtime, and detected up to 5m away from the well in all zones until $CO_2$ release stopped. Also, soil $CO_2$ concentrations at 30cm and 60cm depths at 0m from the well were measured similarly as $50.6{\pm}25.4%$ and $55.3{\pm}25.6%$, respectively, followed by 30cm depth ($31.3{\pm}17.2%$) which was significantly lower than those measured at the other depths on the final day of $CO_2$ release period. Soil $CO_2$ concentrations at all depths in all zones were gradually decreased for about 1 month after $CO_2$ release stopped, but still higher than those of the first day after $CO_2$ release stared. In conclusion, the closer the distance from the well and the deeper the depth, the higher $CO_2$ fluxes and concentrations occurred. Also, long-term monitoring should be required because the leaked $CO_2$ gas can remains in the soil for a long time even if the leakage stopped.

Distributional Characteristics of Fault Segments in Cretaceous and Tertiary Rocks from Southeastern Gyeongsang Basin (경상분지 남동부 일대의 백악기 및 제3기 암류에서 발달하는 단층분절의 분포특성)

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.109-120
    • /
    • 2018
  • The distributional characteristics of fault segments in Cretaceous and Tertiary rocks from southeastern Gyeongsang Basin were derived. The 267 sets of fault segments showing linear type were extracted from the curved fault lines delineated on the regional geological map. First, the directional angle(${\theta}$)-length(L) chart for the whole fault segments was made. From the related chart, the general d istribution pattern of fault segments was derived. The distribution curve in the chart was divided into four sections according to its overall shape. NNE, NNW and WNW directions, corresponding to the peaks of the above sections, indicate those of the Yangsan, Ulsan and Gaeum fault systems. The fault segment population show near symmetrical distribution with respect to $N19^{\circ}E$ direction corresponding to the maximum peak. Second, the directional angle-frequency(N), mean length(Lm), total length(Lt) and density(${\rho}$) chart was made. From the related chart, whole domain of the above chart was divided into 19 domains in terms of the phases of the distribution curve. The directions corresponding to the peaks of the above domains suggest the directions of representative stresses acted on rock body. Third, the length-cumulative frequency graphs for the 18 sub-populations were made. From the related chart, the value of exponent(${\lambda}$) increase in the clockwise direction($N10{\sim}20^{\circ}E{\rightarrow}N50{\sim}60^{\circ}E$) and counterclockwise direction ($N10{\sim}20^{\circ}W{\rightarrow}N50{\sim}60^{\circ}W$). On the other hand, the width of distribution of lengths and mean length decrease. The chart for the above sub-populations having mutually different evolution characteristics, reveals a cross section of evolutionary process. Fourth, the general distribution chart for the 18 graphs was made. From the related chart, the above graphs were classified into five groups(A~E) according to the distribution area. The lengths of fault segments increase in order of group E ($N80{\sim}90^{\circ}E{\cdot}N70{\sim}80^{\circ}E{\cdot}N80{\sim}90^{\circ}W{\cdot}N50{\sim}60^{\circ}W{\cdot}N30{\sim}40^{\circ}W{\cdot}N40{\sim}50^{\circ}W$) < D ($N70{\sim}80^{\circ}W{\cdot}N60{\sim}70^{\circ}W{\cdot}N60{\sim}70^{\circ}E{\cdot}N50{\sim}60^{\circ}E{\cdot}N40{\sim}50^{\circ}E{\cdot}N0{\sim}10^{\circ}W$) < C ($N20{\sim}30^{\circ}W{\cdot}N10{\sim}20^{\circ}W$) < B ($N0{\sim}10^{\circ}E{\cdot}N30{\sim}40^{\circ}E$) < A ($N20{\sim}30^{\circ}E{\cdot}N10{\sim}20^{\circ}E$). Especially the forms of graph gradually transition from a uniform distribution to an exponential one. Lastly, the values of the six parameters for fault-segment length were divided into five groups. Among the six parameters, mean length and length of the longest fault segment decrease in the order of group III ($N10^{\circ}W{\sim}N20^{\circ}E$) > IV ($N20{\sim}60^{\circ}E$) > II ($N10{\sim}60^{\circ}W$) > I ($N60{\sim}90^{\circ}W$) > V ($N60{\sim}90^{\circ}E$). Frequency, longest length, total length, mean length and density of fault segments, belonging to group V, show the lowest values. The above order of arrangement among five groups suggests the interrelationship with the relative formation ages of fault segments.

Depositional Environment and Formation Ages of Eurimji Lake Sediments in Jaechon City, Korea (제천 의림지 호저퇴적물 퇴적환경과 형성시기 고찰)

  • 김주용;양동윤;이진영;김정호;이상헌
    • The Korean Journal of Quaternary Research
    • /
    • v.14 no.1
    • /
    • pp.7-31
    • /
    • 2000
  • Quaternary Geological and geophysical investigation was performed at the Eurimji reservoir of Jaechon City in order to interprete depositional environment and genesis of lake sediments. For this purpose, echo sounding, bottom sampling and columnar sampling by drilling on board and GPR survey were employed for a proper field investigation. Laboratory tests cover grain size population analysis, pollen analysis and $^{14}C$ datings for the lake sediments. The some parts of lake bottom sediments anthropogenically tubated and filled several times to date, indicating several mounds on the bottom surface which is difficult to explain by bottom current. Majority of natural sediments were accumulated both as rolling and suspended loads during seasonal flooding regime, when flash flow and current flow are relatively strong not only at bridge area of the western part of Eurimji, connected to stream valley, but at the several conduit or sewage system surrounding the lake. Most of uniform suspend sediments are accumulated at the lake center and lower bank area. Some parts of bottom sediments indicate the existence of turbid flow and mudflow probably due to piezometric overflowing from the lake bottom, the existence of which are proved by CM patterns of the lake bottom sediments. The columnar samples of the lake sediments in ER-1 and ER-3-1 boreholes indicate good condition without any human tubation. The grain size character of borehole samples shows poorly sorted population, predominantly composed of fine sand and muds, varying skewness and kurtosis, which indicate multi-processed lake deposits, very similar to lake bottom sediments. Borehole columnar section, echo sounding and GPR survey profilings, as well as processed data, indicate that organic mud layers of Eurimji lake deposits are deeper and thicker towards lower bank area, especially west of profile line-9. In addition the columnar sediments indicate plant coverage of the Eurimji area were divided into two pollen zones. Arboreal pollen ( AP) is predominant in the lower pollen zone, whreas non-aboreal pollen(NAP) is rich in the upper pollen zone. Both of the pollen zones are related to the vegetation coverage frequently found in coniferous and deciduous broad-leaved trees(mixed forest) surrounded by mountains and hilly areas and prevailing by aquatic or aquatic margin under the wet temperate climate. The $^{14}C$ age of the dark gray organic muds, ER1-12 sample, is 950$\pm$40 years B.P. As the sediments are anthropogenetically undisturbed, it is assumed that the reliability of age is high. Three $^{14}C$ ages of the dark gray organic muds, including ER3-1-8, ER3-1-10, ER3-1-11 samples, are 600$\pm$30 years B.P., 650$\pm$30 years B.P., 800$\pm$40 years B.P. in the descending order of stratigraphic columnar section. Based on the interpretation of depositional environments and formation ages, it is proved that Eurimji reservoir were constructed at least 950$\pm$40 years B.P., the calibrated ages of which ranges from 827 years, B.P. to 866 years B.P. Ancient people utilize the natural environment of the stream valley to meet the need of water irrigation for agriculture in the local valley center and old alluvium fan area.

  • PDF

Phase Equilibria of the System Pd-Sb-Te and Its Geological Implications (팔라듐-안티몬-테루르 계(系)의 상평형(相平衡)과 지질학적(地質學的) 의의(意義))

  • Kim, Won-Sa;Chao, George Y.
    • Economic and Environmental Geology
    • /
    • v.26 no.3
    • /
    • pp.327-335
    • /
    • 1993
  • Phase relations in the system Pd-Sb-Te were investigated at $1000^{\circ}$, $800^{\circ}$, and $600^{\circ}C$, using the sealed-capsule technique; the quenched products were studied by reflected light microscopy, X-ray diffraction, and electron microprobe analysis. At $1000^{\circ}C$, the solid phases Pd, $Pd_{20}Sb_7$, $Pd_8Sb_3$, $Pd_{31}Sb_{12}$, and $Pd_5Sb_2$ are stable with a liquid phase that occupies most of the isothermal diagram. Additional solid phases at $800^{\circ}C$ are $Pd_5Sb_3$, PdSb, $Pd_8Te_3$, $Pd_7Te_3$, and a continuous $Pd_{20}Te_7-Pd_{20}Sb_7$ solid solution becomes stable. At $600^{\circ}$, $PdSb_2$, $Pd_{17}Te_4$, $Pd_9Te_4$, PdTe, $PdTe_2$, $Sb_2Te_3$, and Sb and continuous PdSb-PdTe and $PdTe-PdTe_2$ solid solutions are stable. All the solid phases exhibit solid solution, mainly by substitution between Sb and Te to an extent that varies with temperature of formation. The maximum substitution (at.%) of Te for Sb in the Pd-Sb phases is: 44.3 in $Pd_8Sb_3$, 52.0 in $Pd_{31}Sb_{12}$, 46.2 in $Pd_5Sb_2$ at $800^{\circ}C$; 15.3 in $Pd_5Sb_3$, 68.3 in $PdSb_2$ at $600^{\circ}C$. The maximum substitution (at.%) of Sb for Te in the Pd-Te phases is 34.5 in $Pd_5Sb_3$ at $800^{\circ}C$, and 41.6 in $Pd_7Te_3$, 5.2 in $Pd_{17}T_4$, 12.4 in $Pd_9Te_4$, and 19.1 in $PdTe_2$ at $600^{\circ}C$. Physical properties and X-ray data of the synthetic $Pd_9Te_4$, PdTe, $PdTe_2$, $Pd_8Sb_3$, PdSb, and $Sb_2Te_3$ correspond very well with those of telluropalladinite, kotulskite, merenskyite, mertieite II, sudburyite, and tellurantimony, respectively. Because X-ray powder diffraction data consistently reveal a 310 peak ($2.035{\AA}$), the $PdSb_2$ phase is most probably of cubic structure with space group $P2_13$. The X-ray powder pattern of a phase with PdSbTe composition, synthesized at $600^{\circ}C$, compares well with that of testibipalladite. Therefore, testibiopalladite may be a member of the $PdSb_2-Pd(Sb_{0.32}Te_{0.68})$ solid solution series which is cubic and $P2_13$ in symmetry. Thus the ideal fonnula for testibiopalladite, presently PdSbTe, must be revised to PdTe(Sb, Te). Borovskite($pd_3SbTe_4$) has not been found in the synthetic system in the temperature range $1000^{\circ}-600^{\circ}C$.

  • PDF

A Study on the Distribution, Contents and Types of Stone Inscription of Wuyi-Gugok in China (중국 무이구곡 바위글씨(石刻)의 분포와 내용 및 유형에 관한 연구)

  • Rho, Jae-Hyun;Cheng, Zhao-Xia;Kim, Hong-Gyun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.1
    • /
    • pp.115-131
    • /
    • 2020
  • Through literature research and field investigation, this paper attempts to study the distribution, morphology and the typification of the visual and perceptual stone inscription in Wuyi-Gugok of China. The results are as follows: First, there are 350 stone inscriptions in total from the 1st Gok to 9th Gok in Wuyi-Gugok. Second, according to the analysis of the stone inscription distribution, 74(21.2%) stone inscriptions in the 5th Gok, 67(19.2%) in the 6th Gok, 65(18.6%) in the 1st Gok, 60(17.2%) in the 2nd Gok and 53(15.2%) in the 4th Gok are confirmed. The above five Goks contain 319(91.1%) stone inscriptions, so they have rich cultural landscape. Third, according to the survey, the number of the stone inscriptions existed in the Sugwangseok of the 1st Gok are 41(22.6%), in the Homagan of Cheonyubong of the 6th Gok are 29(8.3%), in the Jesiam of the 4th Gok are 23(6.6%), in the Nyeongam of the 2nd Gok are 22(6.3%), in the Hyangseongam of the 6th Gok are 21(6%), in the Unwa of the 5th Gok are 19(5.4%), in the Bokhoam of the 5th Gok are 18(5.1%), in the Eunbyeongbong of the 5th Gok are 17(4.9%), in the Daejangbong of the 4th Gok are 14(4%), in the Daewangbong of the 1st Gok and the Geumgokam of the 4th Gok are 12(3.4%). Thus, a total of 228 (65.1%) stone inscriptions are concentrated in these 11 sites, which represent the popularity and cultural value of these rocks. Fourth, the stone inscription of Wuyi-Gugok, praising the landform and topographical geological landscape of Mount Wuyi, mainly describe the scenic name of each Gok related to Zhu Xi's Gugok culture, appreciate Zhu Xi's tracks and the stone inscription in the sacred land of Neo-Confucianism culture, and also record the Confucian edification of mencius thoughts, Muigun(武夷君) and the myths and legends related to the site names of Wuyi mountain, which can remind people of the worldview of the celestial paradise where the gods live and the fairyland of the land of peach blossoms. In addition, it indicates that the historical and cultural landscape, which is full of colorful history and myths and legends, including allusions related to Confucian, buddhist and Taoist celebrities and the ancestor ancient things related to traditional culture of China is very diverse. Fifth, the results of the classification, based on the content of the stone inscription in Wuyi-Gugok, are classified as the scenery name inscription, the praise scene inscription, the recording travel inscription, the recording event inscription, the philosophy inscription, the expressing emotion inscription, the religion inscription, the inscription for auspiciousness, the slogan and expressing ambition inscription and the official document notice inscription, among which there are 102(29.1%) praise scene inscriptions, 93(26.6%) scenery name inscriptions and 61(17.4%) recording travel inscriptions. The stone inscriptions of Wuyi-Gugok have the characteristics of the special emphasis on scenery names, landscape praise and commemorative tours. Sixth, the analysis of the intertext between the 「Figure of Wuyi-Gugok」 and Wuyi-Gugok rock letters, in the study found that the method of propagation between media was mostly the method of propagation of quotations and maintained intermedia through extension, repetition, extension, and compression.

The Abuse and Invention of Tradition from Maintenance Process of Historic Site No.135 Buyeo Gungnamji Pond (사적 제135호 부여 궁남지의 정비과정으로 살펴본 전통의 남용과 발명)

  • Jung, Woo-Jin
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.35 no.2
    • /
    • pp.26-44
    • /
    • 2017
  • Regarded as Korea's traditional pond, Gungnamj Pond was surmised to be "Gungnamji" due to its geological positioning in the south of Hwajisan (花枝山) and relics of the Gwanbuk-ri (官北里) suspected of being components to the historical records of Muwang (武王)'s pond of The Chronicles of the Three States [三國史記] and Sabi Palace, respectively, yet was subjected to a restoration following a designation to national historic site. This study is focused on the distortion of authenticity identified in the course of the "Gungnamji Pond" restoration and the invention of tradition, whose summarized conclusions are as follows. 1. Once called Maraebangjuk (마래방죽), or Macheonji (馬川池) Pond, Gungnamji Pond was existent in the form of a low-level swamp of vast area encompassing 30,000 pyeong during the Japanese colonial period. Hong, Sa-jun, who played a leading role in the restoration of "Gungnamji Pond," said that even during the 1940s, the remains of the island and stone facilities suspected of being the relics of Gungnamji Pond of the Baekje period were found, and that the traces of forming a royal palace and garden were discovered on top of them. Hong, Sa-jun also expressed an opinion of establishing a parallel between "Gungnamji Pond" and "Maraebangjuk" in connection with a 'tale of Seodong [薯童說話]' in the aftermath of the detached palace of Hwajisan, which ultimately operated as a theoretical ground for the restoration of Gungnamj Pond. Assessing through Hong, Sa-jun's sketch, the form and scale of Maraebangjuk were visible, of which the form was in close proximity to that photographed during the Japanese colonial period. 2. The minimized restoration of Gungnamji Pond faced deterrence for the land redevelopment project implemented in the 1960s, and the remainder of the land size is an attestment. The fundamental problem manifest in the restoration of Gungnamji Pond numerously attempted from 1964 through 1967 was the failure of basing the restorative work in the archaeological facts yet in the perspective of the latest generations, ultimately yielding a replication of Hyangwonji Pond of Gyeongbok Palace. More specifically, the methodologies employed in setting an island and a pavilion within a pond, or bridging an island with a land evidenced as to how Gungnamji Pond was modeled after Hyangwonji Pond of Gyeongbok Palace. Furthermore, Chihyanggyo (醉香橋) Bridge referenced in the designing of the bridge was hardly conceived as a form indigenous to the Joseon Dynasty, whose motivation and idea of the misguided restoration design at the time all the more devaluated Gungnamji Pond. Such an utterly pure replication of the design widely known as an ingredient for the traditional landscape was purposive towards the aesthetic symbolism and preference retained by Gyeongbok Palace, which was intended to entitle Gungnamji Pond to a physical status of the value in par with that of Gyeongbok Palace. 3. For its detachment to the authenticity as a historical site since its origin, Gungnamji Pond represented distortions of the landscape beauty and tradition even through the restorative process. The restorative process for such a historical monument, devoid of constructive use and certain of distortion, maintains extreme intimacy with the nationalistic cultural policy promoted by the Park, Jeong-hee regime through the 1960s and 1970s. In the context of the "manipulated discussions of tradition," the Park's cultural policy transformed the citizens' recollection into an idealized form of the past, further magnifying it at best. Consequently, many of the historical sites emerged as fancy and grand as they possibly could beyond their status quo across the nation, and "Gungnamji Pond" was a victim to this monopolistic government-led cultural policy incrementally sweeping away with new buildings and structures instituted regardless of their original space, and hence, their value.

An Analysis of the Landscape Cognitive Characteristics of 'Gugok Streams' in the First Half of the 18th Century Based on the Comparison of China's 『Wuyi-Gugok Painting』 (중국 『무이구곡도』 3폭(幅)의 비교 분석을 통해 본 18세기 무이산 구곡계(九曲溪)의 경물 인지특성)

  • Cheng, Zhao-Xia;Rho, Jae-Hyun;Jiang, Cheng
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.37 no.3
    • /
    • pp.62-82
    • /
    • 2019
  • Taking the three Wuyi-Gugok Drawings, 『A Picture Showing the Boundary Between Mountains and Rivers: A』, 『Landscape of the Jiuqu River in the Wuyi Mountain: B』 and 『Eighteen Sceneries of Wuyi Mountain: C』, which were produced in the mid-Qing Dynasty as the research objects and after investigating the names recorded in the paintings, this paper tries to analyze the scenic spots, scene types and images in the literature survey. Also, based on the number of Scenic type and the number of Scenic name in each Gok, landscape richness(LR) and landscape similarity(LS) of the Gugok scenic spots, the cognitive characteristics of the landscape in the 18th century were carefully observed. The results are as follows. Firstly, according to the description statistics of scenic spot types in Wuyi Mountain Chronicle, there were 41 descriptions of scenery names in the three paintings, among which rock, peak and stone accounted for the majority. According to the data, the number of rocks, peaks and stones in Wuyi-Gugok landscape accounted for more than half, which reflected the characteristics of geological landscape such as Danxia landform in Wuyi-Gugok landscape. Secondly, the landscape of Gugok Stream(九曲溪) was diverse and full of images. The 1st Gok Daewangbong(大王峰) and Manjeongbong(幔亭峰), the 2nd Gok Oknyeobong(玉女峰), the 3rd Gok Sojangbong(小藏峰), the 4th Gok Daejangbong(大藏峰), the 5th Gok Daeeunbyeong(大隱屛) and Muijeongsa(武夷精舍), the 6th Gok Seonjangbong(仙掌峰) and Cheonyubong(天游峰) all had outstanding landscape in each Gok. However, the landscape features of the 7th~9th Gok were relatively low. Thirdly, according to the landscape image survey of each Gok, the image formation of Gugok cultural landscape originates from the specificity of the myths and legends related to Wuyi Mountain, and the landscape is highly well-known. Due to the specificity, the landscape recognition was very high. In particular, the 1st Gok and the 5th Gok closely related to the Taoist culture based on Muigun, the Stone Carving culture and the Boat Tour culture related to neo-confucianism culture of Zhu Xi. Fourthly, according to the analysis results of landscape similarity of 41 landscape types shown in the figure, the similarity of A and C was very high. The morphological description and the relationship of distant and near performance was very similar. Therefore, it could be judged that this was obviously influenced by one painting. As a whole, the names of the scenes depicted in the three paintings were formed at least in the first half of 18th century through a long history of inheritance, accumulated myths and legends, and the names of the scenes. The order of the scenery names in three Drawings had some differences. But among the scenery names appearing in all three Drawings, there were 21 stones, 20 rocks and 17 peaks. Stones, rocks and peaks guided the landscape of Gugok Streams in Wuyi Mountain. Fifthly, Seonjodae(仙釣臺) in A and C was described in the 4th Gok, but what deserved attention was that it was known as the scenery name of the 3rd Gok in Korean. In addition, Seungjindong(升眞洞) in the 1st Gok and Seokdangsa(石堂寺) in the 7th Gok were not described in Drawings A, B and C. This is a special point that needs to be studied in the future.