• 제목/요약/키워드: geodesics

검색결과 66건 처리시간 0.02초

ON CONSTRUCTIONS OF MINIMAL SURFACES

  • Yoon, Dae Won
    • 충청수학회지
    • /
    • 제34권1호
    • /
    • pp.1-15
    • /
    • 2021
  • In the recent papers, S'anchez-Reyes [Appl. Math. Model. 40 (2016), 1676-1682] described the method for finding a minimal surface through a geodesic, and Li et al. [Appl. Math. Model. 37 (2013), 6415-6424] studied the approximation of minimal surfaces with a geodesic from Dirichlet function. In the present article, we consider an isoparametric surface generated by Frenet frame of a curve introduced by Wang et al. [Comput. Aided Des. 36 (2004), 447-459], and give the necessary and sufficient condition to satisfy both geodesic of the curve and minimality of the surface. From this, we construct minimal surfaces in terms of constant curvature and torsion of the curve. As a result, we present a new approach for constructions of the minimal surfaces from a prescribed closed geodesic and unclosed geodesic, and show some new examples of minimal surfaces with a circle and a helix as a geodesic. Our approach can be used in design of minimal surfaces from geodesics.

S-CURVATURE AND GEODESIC ORBIT PROPERTY OF INVARIANT (α1, α2)-METRICS ON SPHERES

  • Huihui, An;Zaili, Yan;Shaoxiang, Zhang
    • 대한수학회보
    • /
    • 제60권1호
    • /
    • pp.33-46
    • /
    • 2023
  • Geodesic orbit spaces are homogeneous Finsler spaces whose geodesics are all orbits of one-parameter subgroups of isometries. Such Finsler spaces have vanishing S-curvature and hold the Bishop-Gromov volume comparison theorem. In this paper, we obtain a complete description of invariant (α1, α2)-metrics on spheres with vanishing S-curvature. Also, we give a description of invariant geodesic orbit (α1, α2)-metrics on spheres. We mainly show that a Sp(n + 1)-invariant (α1, α2)-metric on S4n+3 = Sp(n + 1)/Sp(n) is geodesic orbit with respect to Sp(n + 1) if and only if it is Sp(n + 1)Sp(1)-invariant. As an interesting consequence, we find infinitely many Finsler spheres with vanishing S-curvature which are not geodesic orbit spaces.

RELATIONSHIPS BETWEEN CUSP POINTS IN THE EXTENDED MODULAR GROUP AND FIBONACCI NUMBERS

  • Koruoglu, Ozden;Sarica, Sule Kaymak;Demir, Bilal;Kaymak, A. Furkan
    • 호남수학학술지
    • /
    • 제41권3호
    • /
    • pp.569-579
    • /
    • 2019
  • Cusp (parabolic) points in the extended modular group ${\bar{\Gamma}}$ are basically the images of infinity under the group elements. This implies that the cusp points of ${\bar{\Gamma}}$ are just rational numbers and the set of cusp points is $Q_{\infty}=Q{\cup}\{{\infty}\}$.The Farey graph F is the graph whose set of vertices is $Q_{\infty}$ and whose edges join each pair of Farey neighbours. Each rational number x has an integer continued fraction expansion (ICF) $x=[b_1,{\cdots},b_n]$. We get a path from ${\infty}$ to x in F as $<{\infty},C_1,{\cdots},C_n>$ for each ICF. In this study, we investigate relationships between Fibonacci numbers, Farey graph, extended modular group and ICF. Also, we give a computer program that computes the geodesics, block forms and matrix represantations.

BERTRAND CURVES IN NON-FLAT 3-DIMENSIONAL (RIEMANNIAN OR LORENTZIAN) SPACE FORMS

  • Lucas, Pascual;Ortega-Yagues, Jose Antonio
    • 대한수학회보
    • /
    • 제50권4호
    • /
    • pp.1109-1126
    • /
    • 2013
  • Let $\mathbb{M}^3_q(c)$ denote the 3-dimensional space form of index $q=0,1$, and constant curvature $c{\neq}0$. A curve ${\alpha}$ immersed in $\mathbb{M}^3_q(c)$ is said to be a Bertrand curve if there exists another curve ${\beta}$ and a one-to-one correspondence between ${\alpha}$ and ${\beta}$ such that both curves have common principal normal geodesics at corresponding points. We obtain characterizations for both the cases of non-null curves and null curves. For non-null curves our theorem formally agrees with the classical one: non-null Bertrand curves in $\mathbb{M}^3_q(c)$ correspond with curves for which there exist two constants ${\lambda}{\neq}0$ and ${\mu}$ such that ${\lambda}{\kappa}+{\mu}{\tau}=1$, where ${\kappa}$ and ${\tau}$ stand for the curvature and torsion of the curve. As a consequence, non-null helices in $\mathbb{M}^3_q(c)$ are the only twisted curves in $\mathbb{M}^3_q(c)$ having infinite non-null Bertrand conjugate curves. In the case of null curves in the 3-dimensional Lorentzian space forms, we show that a null curve is a Bertrand curve if and only if it has non-zero constant second Frenet curvature. In the particular case where null curves are parametrized by the pseudo-arc length parameter, null helices are the only null Bertrand curves.

SOME EIGENFORMS OF THE LAPLACE-BELTRAMI OPERATORS IN A RIEMANNIAN SUBMERSION

  • MUTO, YOSIO
    • 대한수학회지
    • /
    • 제15권1호
    • /
    • pp.39-57
    • /
    • 1978
  • It is given in the Lecture Note [1] of Berger, Gauduchon and Mazet that, if ${\pi}$n: (${\tilde{M}}$, ${\tilde{g}}$)${\rightarrow}$(${\tilde{M}}$, ${\tilde{g}}$) is a Riemannian submersion with totally geodesic fibers, ${\Delta}$ and ${\tilde{\Delta}}$ are Laplace operators on (${\tilde{M}}$, ${\tilde{g}}$) and (M, g) respectively and f is an eigenfunction of ${\Delta}$, then its lift $f^L$ is also an eigenfunction of ${\tilde{\Delta}}$ with the common eigenvalue. But such a simple relation does not hold for an eigenform of the Laplace-Beltrami operator ${\Delta}=d{\delta}+{\delta}d$. If ${\omega}$ is an eigenform of ${\Delta}$ and ${\omega}^L$ is the horizontal lift of ${\omega}$, ${\omega}^L$ is not in genera an eigenform of the Laplace-Beltrami operator ${\tilde{\Delta}}$ of (${\tilde{M}}$, ${\tilde{g}}$). The present author has obtained a set of formulas which gives the relation between ${\tilde{\Delta}}{\omega}^L$ and ${\Delta}{\omega}$ in another paper [7]. In the present paper a Sasakian submersion is treated. A Sasakian manifold (${\tilde{M}}$, ${\tilde{g}}$, ${\tilde{\xi}}$) considered in this paper is such a one which admits a Riemannian submersion where the base manifold is a Kaehler manifold (M, g, J) and the fibers are geodesics generated by the unit Killing vector field ${\tilde{\xi}}$. Then the submersion is called a Sasakian submersion. If ${\omega}$ is a eigenform of ${\Delta}$ on (M, g, J) and its lift ${\omega}^L$ is an eigenform of ${\tilde{\Delta}}$ on (${\tilde{M}}$, ${\tilde{g}}$, ${\tilde{\xi}}$), then ${\omega}$ is called an eigenform of the first kind. We define a relative eigenform of ${\tilde{\Delta}}$. If the lift ${\omega}^L$ of an eigenform ${\omega}$ of ${\Delta}$ is a relative eigenform of ${\tilde{\Delta}}$ we call ${\omega}$ an eigenform of the second kind. Such objects are studied.

  • PDF

3D Magic Wand: 하모닉 필드를 이용한 메쉬 분할 기법 (3D Magic Wand: Interface for Mesh Segmentation Using Harmonic Field)

  • 문지혜;박상훈;윤승현
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제28권1호
    • /
    • pp.11-19
    • /
    • 2022
  • 본 논문에서는 특징 추출 하모닉 필드(harmonic field)와 비등방 측지선(anisotropic geodesic)을 이용하여 메쉬의 특징 영역을 분할하는 새로운 기법을 제안한다. 기존 대부분의 메쉬 분할 기법들은 경계 영역에 대한 사용자의 명시적인 입력을 요구하지만, 제안된 기법에서는 사용자가 관심 영역의 임의의 정점을 선택하여 직관적이고 편리하게 특징 영역을 분할한다. 사용자가 선택한 정점을 중심으로 오목한(concave) 영역에서 큰 변화를 갖는 하모닉 필드를 생성한다. 생성된 하모닉 필드에서 하나의 등위선(isoline)을 선택하여 초기 분할 경계선을 정하고, 선택된 등위선에서 최적의 특징점을 추출하여 비등방 측지선으로 연결함으로써 최종적인 분할 경계선을 생성한다. 다양한 실험을 통해 제안된 기법이 사용자의 입력에 민감하지 않으며, 특징 영역 분할에 효과적으로 사용될 수 있음을 보인다.