• Title/Summary/Keyword: geochemical phases

Search Result 42, Processing Time 0.019 seconds

Behavior of Pt, Sb, Te during Crystallizaion of Ore Magma (I) (광화마그마내에서의 백금, 안티모니, 테루리움 거동에 관한 연구(I))

  • 김원사
    • Journal of the Mineralogical Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.93-101
    • /
    • 1996
  • Behavior of platinum group elements during crystallization within ore magma is of interest. In this study platinum is selected and its mineralogical and geochemical behavior in the presence of antimony and tellurium is investigated at 600$^{\circ}C$. High purity Pt, Sb, and Te are used as starting material and silica quartz tubings are as container. Rection products have been examined by use of ore microscope, X-ray diffractometer, electron microprobe analyser and micro-indentation hardness tester. stable phases at 600$^{\circ}C$ are platinum (Pt), Pt5Sb, Pt3Sb, PtSb, stumpflite (PtSb), geversite (PtSb), PtTe, Pt3Te4, Pt2Te3, moncheite (PtTe2), tellurantimony (Sb2Te3), and antimony (Sb). Geversite is the mineral showing the most significant extent of solid solution by up to 27 at% between Sb and Te elements. Isothermal section of 600$^{\circ}C$ is established in this study. It is noted that platinum cannot coexists with stumpflite or geversite under equilibrium condition, and stumpflite composition in equilibrium with geversite may be used as geothermometer.

  • PDF

Geochemical Characteristics of Soil Solution from the Soil Near Mine Tailing Dumps and the Contamination Assessment in Duckum Mine (토양수의 자구화학특성에 따른 금속폐광산 광미야적장주변 토양오염평가: 덕음광산)

  • 이상훈;정주연
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.61-72
    • /
    • 2004
  • The soil samples were collected from the paddy field near the mine tailing dumps in the abandoned Duckum mine in Korea. In the laboratory, the soil solution was extracted from the soil using centrifuge, and analysed for the chemical composition. Physical and chemical soil properties were also analysed. Kaolinite is the main clay minerals in the paddy soil and the CEC value is therefore relatively low. Nearly all soil samples show enrichment in their trace elemental concentrations(Cd, Cu, Pb and Zn) compared with natural background level. Some soil samples exceed the soil remediation intervention values for Cd, Pb and Zn and target value for Cu, when compared with Dutch standard, whereas As, Ni and Cr are in normal range. Lead concentrations in some samples near the mine tailing dumps also exceed the standard for remediation act for agricultural area set by Korean soil conservation law. The trace elemental concentrations are higher in the paddy soil nearer the mine tailing dumps and lower for the samples from distance. Similar trend with distance is found for the soil solution chemistry but the decrease with distance from the mine tailing dumps are sharper than the changes in soil chemistry. Cadmium, Cu and Pb concentrations in the soil solution are very low, ranging from a tenth and hundredths to a maximum of several mg/l, whereas their concentrations in soils are highly enriched for natural background. Most of the trace elements are thought to be either removed by reduced iron sulphides or iron oxides, depending on the redox changes. Geochemical equilibrium modelling indicate the presence of solubility controlling solid phases for Cd and Pb, whereas Zn and Cu might have been controlled by adsorption/desorption processes. Although pollutants migration through solution phase are thought to be limited by adsorption onto various Fe, Mn solid phases, the pollutants exist as easily releasable fractions such as exchangeable site. In this case, the paddy soil would act as pollutant pool, which will supply to plants in situ. whenever the geochemical conditions favour.

Potential Contamination of Soil and Groundwater from the Residual Mine Tailings in the Restored Abandoned Mine Area : Shihung Mine Area (페광산 복구지역 잔류장미로 인한 주변 지하수${\cdot}$토양 오염가능성-시흥광산 사례)

  • 정예진;이상훈
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.461-470
    • /
    • 2001
  • The Shihung mine was restored in the early 90's after abandonment for 20 yews since 1973. Although disposed mine tailings were removed and the site was replaced by an incineration plant, still some residual mine tailings remain in the places including the old mine tailing ditposal area and the adjacent agricultural area. These residual mine tailings are prone to impose an adverse impact on the soil and groundwater and needs investigation for the potential contamination. Mine tailing samples were collected from the old tailing disposal area and the iii paddy. The porewater from the mine tailing were extracted and analysed to investigate chemical changes along the reaction path. Batch leaching tests were also carried out in the laboratory to find any supporting evidence found in the field analysis. Evidence of elemental leaching was confirmed both by the mine tailing and the porewater chemistry in them. The element concentrations of Cu, Cd, Pb, Zn in the porewater exceed the standard for drinking water of Korean government and US EPA. Leaching of heavy metals from the mine tailing seem to be responsible for the contamination. In batch leaching test. heavy metals were either continuous1y released or declined rapidly. Combining the information with porewater variation with depths and the geochemical meodeling results, most of elements are controlled by dissolution and/or precipitation processes, with some solubility controlling solid phases (Cu, Pb, Fe and Zn). Batch leaching test conducted at fixed pH 4 showed much higher releases for the heavy metals up to 400 times (Zn) and this area is becoming more vulnerable to soil and groundwater pollution as precipitation pH shifts to acidic condition.

  • PDF

Geochemical Characteristics of Surface Sediments in the Eastern Part of the Yellow Sea and the Korean West Coast (황해 동부 대륙붕과 한반도 서해안 표층퇴적물의 지구화학적 특성)

  • 조영길;이창복;박용안;김대철;강효진
    • The Korean Journal of Quaternary Research
    • /
    • v.7 no.1
    • /
    • pp.69-91
    • /
    • 1993
  • A total of 76 surface sediment samples, collected from the Korean west coast and the eastern Yellow Sea areas, were analyzed for their elemental composition in order to understand the geochemical characteristics of these deposits. The analyzed elements included 9 major elements (Al, Fe, Na, K, Mg, Ca, Ti, P, Mn), 8 minor elements (Sr, Ba, V, Cr, Co, Ni, Cu, Zn), organic carbon and calcium carbonate. Contents of most analyzed elements, excluding K and Ba, were generally low compared to those of average crust. Contents of most elements, except K and Ca, also correlated with sediment grain size, though the degree of relationship varied widely from one element to another. For fine-grained sediments, a distinction could be made between those in the central Yellow Sea and those in the Keum Estuary based on their characteristic elemental composition: the former were rich in Fe, Na, K, Mg, Ca and V, and the latter in Mn, Co and Ni. The element/aluminium ratios, on the other hand, showed that the central Yellow Sea muds were enriched in Fe, Mg, V, Ni, Cu and Zn and depleted in K, Mn, Ba and Sr relative to the mud located near the Korean Peninsula. Based on the analysis of these results, as well as of the influences of particular mineral phases or pollution effects, we could suggest geochemical criteria which can be used in distinguishing muds from the two different sources, the Keum River and the Yellow River: the former by the higher Mn content and the latter by the higher Mg and V contents, relative to each other.

  • PDF

The Mineralogy and Geochemistry of the Uppermost Sediments of the Lake Hovsgol, North Mongolia : It's Implication to the Paleoenvironmental Changes

  • Tumurhuu, D.;Narantsetseg, Ts.;Ouynchimeg, Ts.
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.3-3
    • /
    • 2004
  • One short core with length of 146cm(HB-107, at coordinates of $N51^{\circ}$11'37.5";$E100^{\circ}$24'45.6", from 229m water depth was subject of the present study. The sub-samples of the core were analyzed for the water contents (WC%), biogenic silica, identification of the main phases, grain size distribution, geochemistry and some physical properties of sediment(Wet density and Magnetic susceptibility) with aims of recording palaeo-environmental changes in Northem Mongolia. The evaluation of the geochemical and mineralogical proxies on palaeo-climated and palaeo-environmental changes are based on comparison to the behvior of biogenic silica through core, as later one had been showed itself, as good indicator of the climate and environmental fluctuation. Age model of the investigating core based on previously C 14 dated core HB105 taken from the central part of the Hobsgol Lake and the result had been published elsewhere. The core consists of two litological varieties : upper diatomaceous silt, lower clay. According to the age model the upper diatomaceous silt formed during the Holocene, lower caly-during the late Pleistocene glacial period. The geochemistry and phase identification analysis on the core samples are resulted in determining main minerals that form the bottom sediments and their geochemistry. The main include quartz, felspar, muscovite, clinochlore, amphibole and carbonate phase(dolomite and calcite). Through the core not only occur the relative quantitative changes of the main phases, but also happen that the carbonate phase completely disappear in diatomaceous silt. This is believed to be related to the lake water salinity changes, which occurred during the trassition period from Pleistocene glacial-to the Holocene interglacial. These abrupt changes of the mineralogy have been clearly traced in geochemistry of sediments, specially in calcium concentration, which is high in lower clay and low in upper diatomaceous silt. That means, geochemistry and mineralogy of the bottom sediments can be used as proxy data on palaeo-climate and palaeo-environmental changes.

  • PDF

Geological Structures and Geochemical Uranium Anormal Zone Around the Shinbo Mine, Korea (신보광산 주변지역의 지질구조와 우라늄 지화학 이상대)

  • Kang, Ji-Hoon;Lee, Deok-Seon
    • Economic and Environmental Geology
    • /
    • v.45 no.1
    • /
    • pp.31-40
    • /
    • 2012
  • This paper examined the characteristics of ductile and brittle structural elements with detailed mapping by lithofacies classification to clarify the relationship between the geological structure and the geochemical high-grade uranium anormal zone and to provide the basic information on the flow of groundwater in the eastern area of Shinbo mine, Jinan-gun, Jeollabuk-do, Korea. It indicates that this area is mainly composed of Precambrian quartzite, metapelite, metapsammite, which show a zonal distribution of mainly ENE-WSW trend, and age unknown pegmatite and Cretaceous porphyry which intrude them. But the Cretaceous Jinan Group which unconformably covers them, contrary to assumption, could not be observed. The main ductile deformation structures of Precambrian metasedimentary rocks were formed at least through three phases of deformation [ENE striking regional foliation (D1) -> ENE or EW striking crenulation foliation (D2) -> WNW or EW trending open, tight, kink folds (D3)]. The predominant orientation of S1 regional foliation strikes ENE and dips south, being similar to the zonal distribution of Precambrian metasedimentary rocks. Most predominant orientation of high-angled brittle fracture (dip angle ${\geq}45^{\circ}$) [ENE (frequency: 24.3%) > NS (23.9%) > (N)NW (18.8%) > WNW (16.9%) > NE (16.1%) fracture sets in descending frequency order], which is closely related to the flow of groundwater, strikes ENE and dips south. It also agrees with the zonal distribution of metasedimentary rocks and the predominant orientation of S1 regional foliation. The next one strikes NS and dips east or west. Considering the controlling factor of the geochemical uranium anormal zone in the Shinbo mine and its eastern areas from the above structural data. the uranium source rock in these areas might be pegmatite and the geochemical uranium anormal zone in the Sinbo mine area could be formed by an secondary enrichment through the flow of pegmatite aquifer's groundwater into the Sinbo mine area like the previous research's result.

Chemical Speciation and Potential Mobility of Heavy Metals in Tailings and Contaminated Soils (광미 및 오염된 토양에서 중금속의 존재형태 및 잠재적인 이동도)

  • 이평구;강민주;최상훈;신성천
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.87-98
    • /
    • 2004
  • Tailings and contaminated soils from Cheongyang mine and Seobo mine have been analysed by ICP-AES from 5-step sequential extraction method of multielement determination on extraction solutions at each step. As and Co within tailings and contaminated soils from Cheongyang mine and Seobo mine are mainly in the residual phase. In case of Cd, Cu and Zn, the most dominant fraction for tailings of Cheongyang mine is the oxidizable phase, while tailings of Seobo mine is dominated by the residual phase. In contaminated soils from Seobo mine, the predominant fraction for Cd, Cu and Zn is the Fe-Mn oxide phase. The exchangeable fraction of Pb in tailings from Cheongyang mine and Seobo mine is relatively high compared with those of other metals; whereas Pb fraction in contaminated soils from Seobo mine is largely associated with the residual fraction.

Marble wastes as amendments to stabilize heavy metals in Zn-Electroplating sludge

  • Riahi, Khalifa;Chaabane, Safa;Thayer, Bechir Ben
    • Advances in environmental research
    • /
    • v.6 no.1
    • /
    • pp.15-23
    • /
    • 2017
  • Powdered marble wastes (PMW) generated by Utique marble cutting industries (North of Tunisia) with abundant amounts were used in this study as low-cost materials to investigate the stabilization of heavy metals (Pb, Zn, Fe) in sludge generated from a local Zn-Electroplating factory. Powdered marble wastes were evaluated by means of chemical fractions of heavy metals in sludge and concentrations of heavy metals in leachate from columns to determine their ability to stabilize heavy metals in contaminated sludge. Results indicated that chemical fractions of heavy metals in sludge were affected by application of the PMW mineral materials and pH, however, the effects varied with heavy metals. Application of the powdered marble wastes mineral materials reduced exchangeable metals in the sequence of Pb (60.5%)>Fe (40.5%)>Zn (30.1%). X-ray diffraction and hydro-geochemical transport code PHREEQC analysis were successfully carried out to get a better understanding of the mechanisms of reactive mineral phases involved in reduced exchangeable heavy metals in sludge after PMW material amendments. Therefore, metal immobilization using powdered marble wastes materials is an effective stabilization technique for industrial metallic hydroxide sludge.

Raman Spectroscopic Study for Investigating the Spatial Distribution and Structural Characteristics of Mn-bearing Minerals in Non-spherical Ferromanganese Nodule from the Shallow Arctic Ocean (북극해 천해저 비구형 망가니즈단괴 내 광물종 분포 및 구조적 특성 규명을 위한 라만 분광분석 연구)

  • Sangmi, Lee;Hyo-Jin, Koo;Hyen-Goo, Cho; Hyo-Im, Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.409-421
    • /
    • 2022
  • Achieving a highly resolved spatial distribution of Mn-bearing minerals and elements in the natural ferromanganese nodules can provide detailed knowledge of the temporal variations of geochemical conditions affecting the formation processes of nodules. While a recent study utilizing Raman spectroscopy has reported the changes in the manganate mineral phases with growth for spherical nodules from the Arctic Sea, the distributions of minerals and elements in the nodules from the shallow Arctic Sea with non-spherical forms have not yet fully elucidated. Here, we reported the micro-laser Raman spectra with varying data acquisition points along three different profiles from the center to the outermost rim of the non-spherical ferromanganese nodules collected from the East Siberian Sea (~73 m). The elemental distributions in the nodule (such as Mn, Fe, etc.) were also investigated by energy dispersive X-ray spectroscopy (EDS) analysis to observe the internal structure and mineralogical details. Based on the microscopic observation, the internal structures of a non-spherical nodule can be divided into three different regions, which are sediment-rich core, iron-rich substrate, and Mn-Fe layers. The Raman results show that the Mn-bearing mineral phases vary with the data acquisition points in the Mn-Fe layer, suggesting the changes in the geochemical conditions during nodule formation. In addition, we also observe that the mineral composition and structural characteristics depend on the profile direction from the core to the rim. Particularly, the Raman spectra obtained along one profile show the lack of Fe-(oxy)hydroxides and the noticeably high crystallinity of Mn-bearing minerals such as birnessite and todorokite. On the other hand, the spectra obtained along the other two profiles present the presence of significant amount of amorphous or poorly-ordered Fe-bearing minerals and the low crystallinity of Mn-bearing minerals. These results suggest that the diagenetic conditions varied with the different growth directions. We also observed the presence of halite in several layers in the nodule, which can be evidence of the alteration of seawater after nodule formation. The current results can provide the opportunity to obtain detailed knowledge of the formation process and geochemical environments recorded in the natural non-spherical ferromanganese nodule.

A Study on Integrated Assessment of Baekdu Mountain Volcanic Aisaster risk Based on GIS (GIS기법을 이용한 백두산 화산재해 종합평가 연구)

  • Xiao-Jiao, Ni;Choi, Yun Soo;Ying, Nan
    • Spatial Information Research
    • /
    • v.22 no.4
    • /
    • pp.77-87
    • /
    • 2014
  • Recently there are many disasters caused by volcanic activities such as the eruptions in Tungurahua, Ecuador(2014) and $Eyjafjallaj\ddot{o}kull$, Iceland(2010). Therefore, it is required to prepare countermeasures for the disasters. This study analyzes the Baekdu Mountain area, where is the risky area because it is active volcano, based on the observed data and scientific methods in order to assess a risk, produce a hazard map and analyze a degree of risk caused by the volcano. Firstly, it is reviewed for the research about the Baekdu mountain volcanic eruption in 1215(${\pm}15$ years) done by Liu Ruoxin. And the factors causing volcanic disaster, environmental effects, and vulnerability of Baekdu Mountain are assessed by the dataset, which includes the earthquake monitoring data, the volcanic deformation monitoring data, the volcanic fluid geochemical monitoring data, and the socio-economic statistics data. A hazard, especially caused by a volcano, distribution map for the Baekdu Mountain Area is produced by using the assessment results, and the map is used to establish the disaster risk index system which has the four phases. The first and second phases are very high risky area when the Baekdu Mountain erupts, and the third and fourth phases are less dangerous area. The map shows that the center of mountain has the first phase and the farther area from the center has the lower phase. Also, the western of Baekdu Mountain is more vulnerable to get the risk than the eastern when the factors causing volcanic disasters are equally applied. It seems to be caused by the lower stability of the environment and the higher vulnerability.