• Title/Summary/Keyword: genotoxic effects

Search Result 110, Processing Time 0.02 seconds

Thresholds of Genotoxic and Non-Genotoxic Carcinogens

  • Nohmi, Takehiko
    • Toxicological Research
    • /
    • v.34 no.4
    • /
    • pp.281-290
    • /
    • 2018
  • Exposure to chemical agents is an inevitable consequence of modern society; some of these agents are hazardous to human health. The effects of chemical carcinogens are of great concern in many countries, and international organizations, such as the World Health Organization, have established guidelines for the regulation of these chemicals. Carcinogens are currently categorized into two classes, genotoxic and non-genotoxic carcinogens, which are subject to different regulatory policies. Genotoxic carcinogens are chemicals that exert carcinogenicity via the induction of mutations. Owing to their DNA interaction properties, there is thought to be no safe exposure threshold or dose. Genotoxic carcinogens are regulated under the assumption that they pose a cancer risk for humans, even at very low doses. In contrast, non-genotoxic carcinogens, which induce cancer through mechanisms other than mutations, such as hormonal effects, cytotoxicity, cell proliferation, or epigenetic changes, are thought to have a safe exposure threshold or dose; thus, their use in society is permitted unless the exposure or intake level would exceed the threshold. Genotoxicity assays are an important method to distinguish the two classes of carcinogens. However, some carcinogens have negative results in in vitro bacterial mutation assays, but yield positive results in the in vivo transgenic rodent gene mutation assay. Non-DNA damage, such as spindle poison or topoisomerase inhibition, often leads to positive results in cytogenetic genotoxicity assays such as the chromosome aberration assay or the micronucleus assay. Therefore, mechanistic considerations of tumor induction, based on the results of the genotoxicity assays, are necessary to distinguish genotoxic and non-genotoxic carcinogens. In this review, the concept of threshold of toxicological concern is introduced and the potential risk from multiple exposures to low doses of genotoxic carcinogens is also discussed.

Differential Effects of Nongenotoxic and Genotoxic Carcinogen on Cell Proliferation and c-Jun Expression in the Rat Liver Initiated with Diethylnitrosamine

  • Kim, Hye-Jin;Kim, Jong-Won;Hong, Jin-Tae;Nam, Ki-Taek;Kim, Dae-Joong
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.2
    • /
    • pp.89-94
    • /
    • 1999
  • Cell proliferation and c-Jun expression pattern in liver exposed by nongenotoxic carcinogens phenobarbital (PB) and clofibrate, and genotoxic carcinogen 2-amino-3-methylimidazo [4,5-f] quinoline (IQ) were investigated to see whether differential effects of genotoxic and non-genotoxic carcinogens on the development of neoplastic foci may be related to differential effect on cell proliferation. Male F344 rats were initially given a single intraperitioneal injection of diethylnitrosamine (200 mg/kg body weight), and 2 weeks later, animals were fed diets containing 0.03% IQ or 0.5% CE or 0.05% PB or basal diet as a control for 6 weeks. All rats were subjected to the two-thirds partial hepatectomy (PH) at week 3. Sequential sacrifice of rats was performed until 8 weeks. Cell proliferation was examined by immunohistochemical staining of bromodeoxyuridine and c-Jun expression was determined by northern blotting. The increase of cell proliferation rate after PH was significant in the rats fed 0.05% IQ and continued until 8 weeks, while the increase was not significant in the rats fed phenobarbital and clofibrate compared to that in the rats fed control diet. mRNA level of c-Jun in the liver treated with IQ was about 7 fold higher than that of control and peak at 5 hours after rH. In the liver treated with CE, mRNA level of c-Jun was 3-4 fold higher than that of control and the highest level of mRNA of c-Jun was seen at 24 hours after PH. These results show that differential effects of genotoxic and non-genotoxic carcinogens on the development of neoplastic foci may be related to differential effect on cell proliferation pattern.

  • PDF

Genotoxic and Anti-Genotoxic Effects of Vanillic Acid Against Mitomycin C-Induced Genomic Damage in Human Lymphocytes In Vitro

  • Erdem, Merve Guler;Cinkilic, Nilufer;Vatan, Ozgur;Yilmaz, Dilek;Bagdas, Deniz;Bilaloglu, Rahmi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.4993-4998
    • /
    • 2012
  • Vanillic acid, a vegetable phenolic compound, is a strong antioxidant. The aim of the present study was to determine its effects on mitomycin C-induced DNA damage in human blood lymphocyte cultures in vitro, both alone and in combination with mitomycin C (MMC). The cytokinesis block micronucleus test and alkaline comet assay were used to determine genotoxic damage and anti-genotoxic effects of vanillic acid at the DNA and chromosome levels. MMC induced genotoxicity at a dose of $0.25{\mu}g/ml$. Vanillic acid ($1{\mu}g/ml$) significantly reduced both the rates of DNA damaged cells and the frequency of micronucleated cells. A high dose of vanillic acid ($2{\mu}g/ml$) itself had genotoxic effects on DNA. In addition, both test systems showed similar results when tested with the negative control, consisting of dimethyl sulfoxide (DMSO) in combination with vanillic acid ($1{\mu}g/ml$)+MMC. In conclusion, vanillic acid could prevent oxidative damage to DNA and chromosomes when used at an appropriately low dose.

Comparative evaluation of the mutagenicity and genotoxicity of smoke condensate derived from Korean cigarettes

  • Kim, Ha Ryong;Lee, Jeong Eun;Jeong, Mi Ho;Choi, Seong Jin;Lee, Kyuhong;Chung, Kyu Hyuck
    • Environmental Analysis Health and Toxicology
    • /
    • v.30
    • /
    • pp.14.1-14.7
    • /
    • 2015
  • Objectives Cigarette smoking is associated with carcinogenesis owing to the mutagenic and genotoxic effects of cigarette smoke. The aim of this study was to evaluate the mutagenic and genotoxic effects of Korean cigarettes using in vitro assays. Methods We selected 2 types of cigarettes (TL and TW) as benchmark Korean cigarettes for this study, because they represent the greatest level of nicotine and tar contents among Korean cigarettes. Mutagenic potency was expressed as the number of revertants per ${\mu}g$ of cigarette smoke condensate (CSC) total particulate matter whereas genotoxic potency was expressed as a concentration-dependent induction factor. The CSC was prepared by the International Organization for Standardization 3308 smoking method. CHO-K1 cells were used in vitro micronucleus (MNvit) and comet assays. Two strains of Salmonella typhimurium (Salmonella enterica subsp. enterica ; TA98 and TA1537) were employed in Ames tests. Results All CSCs showed mutagenicity in the TA98 and TA1537 strains. In addition, DNA damage and micronuclei formation were observed in the comet and MNvit assays owing to CSC exposure. The CSC from the 3R4F Kentucky reference (3R4F) cigarette produced the most severe mutagenic and genotoxic potencies, followed by the CSC from the TL cigarette, whereas the CSC from the TW cigarette produced the least severe mutagenic and genotoxic potencies. Conclusions The results of this study suggest that the mutagenic and genotoxic potencies of the TL and TW cigarettes were weaker than those of the 3R4F cigarette. Further study on standardized concepts of toxic equivalents for cigarettes needs to be conducted for more extensive use of in vitro tests.

Dual roles of estrogen metabolism in mammary carcinogenesis

  • Chang, Min-Sun
    • BMB Reports
    • /
    • v.44 no.7
    • /
    • pp.423-434
    • /
    • 2011
  • A female hormone, estrogen, is linked to breast cancer incidence. Estrogens undergo phase I and II metabolism by which they are biotransformed into genotoxic catechol estrogen metabolites and conjugate metabolites are produced for excretion or accumulation. The molecular mechanisms underlying estrogen-mediated mammary carcinogenesis remain unclear. Cell proliferation through activation of estrogen receptor (ER) by its agonist ligands and is clearly considered as one of carcinogenic mechanisms. Recent studies have proposed that reactive oxygen species generated from estrogen or estrogen metabolites are attributed to genotoxic effects and signal transduction through influencing redox sensitive transcription factors resulting in cell transformation, cell cycle, migration, and invasion of the breast cancer. Conjuguation metabolic pathway is thought to protect cells from genotoxic and cytotoxic effects by catechol estrogen metabolites. However, methoxylated catechol estrogens have been shown to induce ER-mediated signaling pathways, implying that conjugation is not a simply detoxification pathway. Dual action of catechol estrogen metabolites in mammary carcinogenesis as the ER-signaling molecules and chemical carcinogen will be discussed in this review.

Micronucleus Test of Kong-Jin-Dan, a Polyherbal Formula, in Bone Marrow Cells of Male ICR Mice

  • Lee, Sang-Nam;Park, Ji-Ha;Ku, Sae-Kwang
    • Toxicological Research
    • /
    • v.24 no.3
    • /
    • pp.213-218
    • /
    • 2008
  • In this research, the genotoxic effects of Kong-Jin-Dan(KJD), a polyherbal formula were evaluated using the mouse micronucleus test. KJD was administered once a day for 2 continuous days by oral gavage to male ICR mice at doses of 2000, 1000 and 500 mg/kg. Cyclophosphamide was used as a known genotoxic agent in a positive control. The appearance of a micronucleus is used as an index for genotoxic potential. In addition, the changes on the total white blood cells and differential counts on the lymphocytes, neutrophils, eosinophils, basophils and monocytes in the prepared blood smears were also conducted to observe the possible immunosuppress. The results obtained indicated that KJD shows no genotoxicity effects up to 2000 mg/kg dosing levels, but KJD shows slight increased trends in the blood total leukocyte numbers as pharmacological effects of immune stimulation. In addition, it is also considered that there were no problems from cytotoxicity of KJD tested in this study because the polychromatic erythrocyte ratio was detected as > 0.42 in all tested groups.

EVALUATION OF GENETIC TOXICITY FROM ENVIRONMENTAL POLLUTANTS IN DAPHNIA MAGNA AND CHIRONOMUS TENTANS FOR APPLICATION IN ECOLOGICAL RISK ASSESSMENT

  • Park, Sun-Young;Lee, Si-Won;Choi, Jin-Hee
    • Environmental Engineering Research
    • /
    • v.11 no.5
    • /
    • pp.277-284
    • /
    • 2006
  • The genetic toxicity of environmental pollutants, namely, nonylphenol (NP), bisphenol A (BPA) and chloropyriphos (CP) was investigated in aquatic sentinel species, freshwater crustacean, Daphnia magna, and larva of aquatic midge, Chironomus tentans, using Comet assay. Physiological effect of such pollutants was also investigated by studying the specimens' rates of reproduction, growth and survival. Acute toxicity results showed that, as expected, Daphnia was more sensitive than Chironomus to chemical exposure. The order of acute toxicity was CP > NP > BPA in D. magna and NP > CP > BPA in C. tentans. BPA may exert a genotoxic effect on D. magna and C. tentans, given that DNA strand breaks increased in both species exposed to this compound, whereas NP- and CP-induced DNA damage occurred only in C. tentans. In vivo genotoxic data obtained in aquatic sentinel species could provide valuable information for freshwater quality monitoring. The experiments with NP-exposed D. magna showed that the pollutant has long-term effects on reproduction, whereas no short-term effect on DNA integrity was found, being an example of a false-negative result from the biomarkers perspective. This result could be interpreted that other mechanism than genetic alteration might be involved in NP-induced reproduction failure in D. magna. False-positive results from the genotoxic biomarker obtained in BPA-exposed D. magna and in NP-exposed C. tentans make it difficult to use DNA integrity as an early warning biomarker. However, as the mere presence of genotoxic compounds, which are potentially carcinogenic, is of high concern to human and ecosystem health, it could also be important to rapidly and effectively detect genotoxic compounds in the aquatic system in ways that do not necessarily accompany a higher level of alteration. Considering the potential of D. magna and C. tentans as bioindicator species, and the importance of genotoxic biomarkers in ecotoxicity monitoring, DNA damage in these species could provide useful information for environmental risk assessment.

Mutagenic effects of industrial wastewaters by using umu-test (umu-test에 의한 일부 배출시설별 폐수의 변이원성 조사연구)

  • 김영환;손종렬;문영환;배은상
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.2
    • /
    • pp.9-20
    • /
    • 1996
  • Genotoxicity/mutagenicity of organic chemicals in industrial wastewater was investigated using umu-test with a Salmonella typhimurium TA1535 strain. The tester strain was derived by introducing plasmid pSK 1002, which carried a umu C - lac Z fusion gene into S typhimurium TA1535, and tester strain in the presence microsomal activation proved to be the more sensitive maker of genotoxicity. Genotoxic responses were observed in concentrated with a blue-rayon column, from 14 plants tested. The results were as follow; 1. Genotoxic responses were observed in concentrated from nine plants(64.3%) tested. 2. The results show that genotoxic activity was particulary high in the untreated wastewaters and decreased in the treated wastewaters(35.7%) 3. No significant correlation was found between genotoxicity and water ollution indicators, such as COD and BOD.

  • PDF

Micronucleus Test of Picrorrhiza Rhizoma Aqueous Extract in Bone Marrow Cells of Male ICR Mice

  • Chung, In-Kwon;Cheon, Woo-Hyun;Ku, Sae-Kwang
    • Toxicological Research
    • /
    • v.27 no.2
    • /
    • pp.119-123
    • /
    • 2011
  • In this research, the genotoxic effect of Picrorrhiza Rhizoma (PR) aqueous extract was evaluated using the mouse micronucleus test. PR extract was administered once a day for 2 continuous days by oral gavage to male ICR mice at doses of 2000, 1000 and 500 mg/kg. Cyclophosphamide was used as a known genotoxic agent in a positive control. The appearance of a micronucleus (MN) in polychromatic erythrocyte (PCE) is used as an index for genotoxic potential, and PCE ratio is used as an index of cytotoxicity. Although significant (p < 0.01) increase of the number of PCE with one or more nuclei (MNPCE) was detected in cyclophosphamide treated groups, no significant increases of MNPCE numbers were observed in all three different dosages of PR extracts treated mice with over 0.39 of the individual polychromatic erythrocyte ratio in all mice used in this study. The results obtained indicated that PR extract shows no genotoxicity effects up to 2000 mg/kg dosing levels.

Geno- and Ecotoxicity Evaluation of Silver Nanoparticles in Freshwater Crustacean Daphnia magna

  • Park, Sun-Young;Choi, Jin-Hee
    • Environmental Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.23-27
    • /
    • 2010
  • Genotoxic- and ecotoxic assessments of silver nanoparticles (AgNPs) were conducted on the freshwater crustacean Daphnia magna. AgNPs may have genotoxic effects on D. magna, given that the DNA strand breaks increased when exposed to this nanoparticle. Increased mortality was concomitantly observed with DNA damage in the AgNPs-exposed D. magna, which suggests AgNPs-induced DNA damage might provoke higher-level consequences. The results of the comparative toxicities of AgNPs and Ag ions suggest that AgNPs are slightly more toxic than Ag ions. Overall, these results suggest that AgNPs may be genotoxic toward D. magna, which may contribute to the knowledge relating to the aquatic toxicity of AgNPs on aquatic ecosystems, for which little data are available.