• 제목/요약/키워드: genome variability

검색결과 57건 처리시간 0.03초

Algal genomics perspective: the pangenome concept beyond traditional molecular phylogeny and taxonomy

  • Lee, JunMo
    • Journal of Species Research
    • /
    • 제10권2호
    • /
    • pp.142-153
    • /
    • 2021
  • Algal genomics approaches provide a massive number of genome/transcriptome sequences and reveal the evolutionary history vis-à-vis primary and serial endosymbiosis events that contributed to the biodiversity of photosynthetic eukaryotes in the eukaryote tree of life. In particular, phylogenomic methods using several hundred or thousands of genes have provided new insights into algal taxonomy and systematics. Using this method, many novel insights into algal species diversity and systematics occurred, leading to taxonomic revisions. In addition, horizontal gene transfers (HGTs) of functional genes have been identified in algal genomes that played essential roles in environmental adaptation and genomic diversification. Finally, algal genomics data can be used to address the pangenome, including core genes shared among all isolates and partially shared strain-specific genes. However, some aspects of the pangenome concept (genome variability of intraspecies level) conflict with population genomics concepts, and the issue is closely related to defining species boundaries using genome variability. This review suggests a desirable future direction to merge algal pangenomics and population genomics beyond traditional molecular phylogeny and taxonomy.

Complete Genomic Characterization of Two Beet Soil-Borne Virus Isolates from Turkey: Implications of Comparative Analysis of Genome Sequences

  • Moradi, Zohreh;Maghdoori, Hossein;Nazifi, Ehsan;Mehrvar, Mohsen
    • The Plant Pathology Journal
    • /
    • 제37권2호
    • /
    • pp.152-161
    • /
    • 2021
  • Sugar beet (Beta vulgaris L.) is known as a key product for agriculture in several countries across the world. Beet soil-borne virus (BSBV) triggers substantial economic damages to sugar beet by reducing the quantity of the yield and quality of the beet sugars. We conducted the present study to report the complete genome sequences of two BSBV isolates in Turkey for the first time. The genome organization was identical to those previously established BSBV isolates. The tripartite genome of BSBV-TR1 and -TR3 comprised a 5,835-nucleotide (nt) RNA1, a 3,454-nt RNA2, and a 3,005-nt RNA3 segment. According to sequence identity analyses, Turkish isolates were most closely related to the BSBV isolate reported from Iran (97.83-98.77% nt identity). The BSBV isolates worldwide (n = 9) were phylogenetically classified into five (RNA-coat protein read through gene [CPRT], TGB1, and TGB2 segments), four (RNA-rep), or three (TGB3) lineages. In genetic analysis, the TGB3 revealed more genetic variability (Pi = 0.034) compared with other regions. Population selection analysis revealed that most of the codons were generally under negative selection or neutral evolution in the BSBV isolates studied. However, positive selection was detected at codon 135 in the TGB1, which could be an adaptation in order to facilitate the movement and overcome the host plant resistance genes. We expect that the information on genome properties and genetic variability of BSBV, particularly in TGB3, TGB1, and CPRT genes, assist in developing effective control measures in order to prevent severe losses and make amendments in management strategies.

Prospect of plant molecular cytogenetics in the 21st century

  • Mukai, Yasuhiko
    • 한국생명과학회:학술대회논문집
    • /
    • 한국생명과학회 2003년도 제40회 국제학술심포지움
    • /
    • pp.14-27
    • /
    • 2003
  • The genomes of Arabidopsis and rice have been fully sequenced. Genomic sequencing provides global information about genome structure and organization. A comprehensive research account of our recent studies conducted on genome painting, comparative genomics and genome fusion is provided in order to project the prospects of plant cytogenetic research in post-genomics era. Genome analysis by GISH using genome painting is demonstrated as an excellent means suitable for visualization of a whole genome, since total genomic DNA representing the overall molecular composition of the genome is used as a probe. FISH on extended DNA fibers has been developed for high-resolution FISH and has contributed to determining the copy number and order of genes. We have also mapped a number of genes involving starch synthesis on wheat chromosomes by FISH and compared the position of these genes on linkage map of rice. Macro synteny between wheat and rice can be observed by comparing the location of these genes in spite of the fact that the size of DNA per chromosome differs by 20 fold in two. Moreover, to approach our goal towards making bread and udon noodles from rice flour in future by incorporating bread making and the noodle qualifies in rice, we have been successful in introducing large genomic DNA fragments containing agronomically important genes of wheat into a rice by successive introduction of large insert BAC clones, there by expanding genetic variability in rice. We call this method genome fusion.

  • PDF

Morphometric and Genetic Variability Among Tylenchulus semipenetrans Populations from Citrus Growing Area in Korea

  • Park, Byeong-Yong;Park, Sun-Nam;Lee, Jae-Kook;Bae, Chang-Hwan
    • The Plant Pathology Journal
    • /
    • 제25권3호
    • /
    • pp.236-240
    • /
    • 2009
  • Tylenchulus semipenetrans, citrus nematode is an important phytopathogenic nematode and responsible for serious damage on citrus. However, little information is available about genetic variability of T. semipenetrans among different populations with variation of conventional diagnostic characteristics. In this study, we compared the morphometric and genetic characteristics among different populations. The mature female of T. semipenetrans collected in this study had thicker cuticle than those in the previous studies. In comparative sequence analysis of T. semipenetrans populations obtained from Jeju in Korea, we observed genetic variations within clones generated from single individuals. To determine whether variability among copies of nuclear ribosomal DNA sequences exists in the genome of T. semipenetrans, PCR-RFLP technique from individuals of Korean isolates with MseI and MspI restriction enzymes was used to prove experimentally that all populations have intra-specific variations. Restriction enzyme digestion created several fragments on 3.0% agarose gel corresponding to several haplotypes in all populations, though some populations displayed fragment deletion. The total length of fragments was larger than before digestion, indicating sequence heterogeneity within the genome of T. semipenetrans.

월경통 환자의 월경주기에 따른 심박변이도(Heart Rate Variability) 차이에 대한 고찰 (Effects of Menstrual Cycle on Heart Rate Variability in Dysmenorrhea Patients)

  • 김은숙;문승준;조한백;임은미;고성규;조정훈
    • 대한한방부인과학회지
    • /
    • 제23권2호
    • /
    • pp.124-130
    • /
    • 2010
  • Purpose: The aim of the study was to investigate menstrual cycle phase differences in Heart Rate Variability(HRV) in dysmenorrhea patients. Methods: 16 dysmenorrhea patients were enrolled. The severity of dysmenorrhea was measured by Visual Analog Scale(VAS). Recordings for HRV analysis were obtained during the two phases of the menstrual cycle (follicular phase 4~10 days and luteal phase 18~23 days from the start of bleeding). Results: No measure of HRV was significantly different between two menstrual cycle phases. Conclusion: We concluded that menstrual cycle was not significantly associated with changes in autonomic nervous system as measured by HRV in dysmenorrhea patients.

Genomic Sequence Variability of the Prion Gene (PRNP) in Korean Cattle

  • Choi, Sang-Haeng;Chae, Sung-Hwa;Choi, Han-Ho;Kim, Jeong-Seon;Kang, Bo-Ra;Yeo, Jung-Sou;Choi, Inho;Lee, Yong-Seok;Choy, Yun-Ho;Park, Hong-Seog
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권5호
    • /
    • pp.653-660
    • /
    • 2007
  • In this study, we have investigated sequence variants in the PRNP gene of 20 individuals belonging to the Korean cattle, and have analyzed and compared genetic features between varieties of other cattle breeds. Of the 73 sequence variants identified in Korean cattle, 27 were identified for the first time in this study, whereas 46 of these polymorphisms had previously been isolated. We discovered a 2.6 kb SNP hot spot region localized on the putative promoter region of the PRNP gene. Furthermore, the copy numbers of the octapeptide repeat (24 bp indel) which is detected on the coding sequence (CDS) of the PRNP exhibited a completely homozygous 6/6 genotype which is dominant in other cattle breeds. We also characterized a new 19 bp/10 bp allele located on the putative promoter region of the PRNP gene, which represented 0.71 in allele frequency. To the best of our knowledge, this report is the first to address polymorphisms of the PRNP gene structure in Korean cattle in which BSE has yet to be discovered. Therefore, our findings may prove useful with regard to our current understanding of allelic diversity in bovine species, and may also provide new insights into the genetic factors associated with susceptibility or resistance to BSE.

Dissecting Cellular Heterogeneity Using Single-Cell RNA Sequencing

  • Choi, Yoon Ha;Kim, Jong Kyoung
    • Molecules and Cells
    • /
    • 제42권3호
    • /
    • pp.189-199
    • /
    • 2019
  • Cell-to-cell variability in gene expression exists even in a homogeneous population of cells. Dissecting such cellular heterogeneity within a biological system is a prerequisite for understanding how a biological system is developed, homeostatically regulated, and responds to external perturbations. Single-cell RNA sequencing (scRNA-seq) allows the quantitative and unbiased characterization of cellular heterogeneity by providing genome-wide molecular profiles from tens of thousands of individual cells. A major question in analyzing scRNA-seq data is how to account for the observed cell-to-cell variability. In this review, we provide an overview of scRNA-seq protocols, computational approaches for dissecting cellular heterogeneity, and future directions of single-cell transcriptomic analysis.

A Short Report on the Markov Property of DNA Sequences on 200-bp Genomic Units of Roadmap Genomics ChromHMM Annotations: A Computational Perspective

  • Park, Hyun-Seok
    • Genomics & Informatics
    • /
    • 제16권4호
    • /
    • pp.27.1-27.6
    • /
    • 2018
  • The non-coding DNA in eukaryotic genomes encodes a language that programs chromatin accessibility, transcription factor binding, and various other activities. The objective of this study was to determine the effect of the primary DNA sequence on the epigenomic landscape across a 200-base pair of genomic units by integrating 127 publicly available ChromHMM BED files from the Roadmap Genomics project. Nucleotide frequency profiles of 127 chromatin annotations stratified by chromatin variability were analyzed and integrative hidden Markov models were built to detect Markov properties of chromatin regions. Our aim was to identify the relationship between DNA sequence units and their chromatin variability based on integrated ChromHMM datasets of different cell and tissue types.

SSR-Primer Generator: A Tool for Finding Simple Sequence Repeats and Designing SSR-Primers

  • Hong, Chang-Pyo;Choi, Su-Ryun;Lim, Yong-Pyo
    • Genomics & Informatics
    • /
    • 제9권4호
    • /
    • pp.189-193
    • /
    • 2011
  • Simple sequence repeats (SSRs) are ubiquitous short tandem duplications found within eukaryotic genomes. Their length variability and abundance throughout the genome has led them to be widely used as molecular markers for crop-breeding programs, facilitating the use of marker-assisted selection as well as estimation of genetic population structure. Here, we report a software application, "SSR-Primer Generator " for SSR discovery, SSR-primer design, and homology-based search of in silico amplicons from a DNA sequence dataset. On submission of multiple FASTA-format DNA sequences, those analyses are batch processed in a Java runtime environment (JRE) platform, in a pipeline, and the resulting data are visualized in HTML tabular format. This application will be a useful tool for reducing the time and costs associated with the development and application of SSR markers.

Overview of personalized medicine in the disease genomic era

  • Hong, Kyung-Won;Oh, Berm-Seok
    • BMB Reports
    • /
    • 제43권10호
    • /
    • pp.643-648
    • /
    • 2010
  • Sir William Osler (1849-1919) recognized that "variability is the law of life, and as no two faces are the same, so no two bodies are alike, and no two individuals react alike and behave alike under the abnormal conditions we know as disease". Accordingly, the traditional methods of medicine are not always best for all patients. Over the last decade, the study of genomes and their derivatives (RNA, protein and metabolite) has rapidly advanced to the point that genomic research now serves as the basis for many medical decisions and public health initiatives. Genomic tools such as sequence variation, transcription and, more recently, personal genome sequencing enable the precise prediction and treatment of disease. At present, DNA-based risk assessment for common complex diseases, application of molecular signatures for cancer diagnosis and prognosis, genome-guided therapy, and dose selection of therapeutic drugs are the important issues in personalized medicine. In order to make personalized medicine effective, these genomic techniques must be standardized and integrated into health systems and clinical workflow. In addition, full application of personalized or genomic medicine requires dramatic changes in regulatory and reimbursement policies as well as legislative protection related to privacy. This review aims to provide a general overview of these topics in the field of personalized medicine.