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Cell-to-cell variability in gene expression exists even in a ho-

mogeneous population of cells. Dissecting such cellular het-

erogeneity within a biological system is a prerequisite for un-

derstanding how a biological system is developed, homeo-

statically regulated, and responds to external perturbations. 

Single-cell RNA sequencing (scRNA-seq) allows the quantita-

tive and unbiased characterization of cellular heterogeneity by 

providing genome-wide molecular profiles from tens of thou-

sands of individual cells. A major question in analyzing 

scRNA-seq data is how to account for the observed cell-to-cell 

variability. In this review, we provide an overview of scRNA-

seq protocols, computational approaches for dissecting cellu-

lar heterogeneity, and future directions of single-cell tran-

scriptomic analysis. 
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INTRODUCTION 
 

A single fertilized egg gives rise to all cell types in the human 

body. Despite carrying the same genetic information, every 

cell in our body is unique and shows substantial variability in 

cellular phenotype compared with other cells (Eldar and 

Elowitz, 2010; Raj and van Oudenaarden, 2008). A central 

challenge in biology is to understand how such cellular diver-

sity is generated from a single cell, how it is regulated for 

tissue homeostasis, and how it is exploited for mounting  

appropriate responses to external perturbations in normal 

and diseased tissues. Answering these questions requires 

single-cell measurements of molecular and cellular features. 

Over the past decade, single-cell RNA sequencing (scRNA-

seq) technologies have been developed that provide an un-

biased view of cell-to-cell variability in gene expression with-

in a population of cells (Chen et al., 2018; Kolodziejczyk et 

al., 2015a; Tanay and Regev, 2017; Wagner et al., 2016). 

Recent technological developments in both microfluidic and 

barcoding approaches allow the transcriptomes of tens of 

thousands of single cells to be assayed. Coupled with the 

exponential increase in the amount of single-cell tran-

scriptomic data, computational tools necessary to achieve 

robust biological findings are being actively developed 

(Stegle et al., 2015; Zappia et al., 2018). In this review, we 

provide an overview of scRNA-seq protocols and existing 

computational methods for dissecting cellular heterogeneity 

from scRNA-seq data, and discuss their assumptions and 

limitations. We also examine potential future developments 

in the field of single-cell genomics. 

 

TECHNOLOGIES OF SCRNA-SEQ 
 

The first paper demonstrating the feasibility of profiling the 

transcriptomes of individual mouse blastomeres and oocytes 

captured by micromanipulation was published in 2009 (Tang 

et al., 2009)—1 year after the introduction of bulk RNA-seq 

(Lister et al., 2008; Mortazavi et al., 2008; Nagalakshmi et al., 

2008). The early protocols for scRNA-seq were applied only  
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to a small number of cells and suffered from a high level of 

technical noise resulting from inefficient reverse transcription 

(RT) and amplification (Ramskold et al., 2012; Sasagawa et 

al., 2013; Tang et al., 2009). These limitations of early proto-

cols have been mitigated by two innovative barcoding ap-

proaches. 

 

Cellular and molecular barcoding 
The cell barcoding approach integrates a short cell barcode 

(CB) into cDNA at the early step of RT, first introduced in the 

single-cell tagged reverse transcription sequencing (STRT-

seq) protocol (Islam et al., 2011). All cDNAs from cells are 

pooled for multiplexing, and downstream steps are carried 

out in a single tube, reducing reagent and labor costs. The 

cell barcoding approach was adopted to increase the num-

ber of cells in a plate-based or droplet-based platform. Early 

protocols relied on the plate-based platform, in which each 

cell is sorted into individual wells of a microplate, such as a 

96- or 384-well plate, using fluorescence-activated cell sort-

ing (FACS) or micropipettes (Hashimshony et al., 2012; Islam 

et al., 2011; Jaitin et al., 2014). Each well contains well-

specific barcoded RT primers (Hashimshony et al., 2012; 

Jaitin et al., 2014) or barcoded oligonucleotides for tem-

plate-switching PCR (Islam et al., 2011), and subsequent 

steps after RT are performed on pooled samples. In the 

droplet-based platform, encapsulating single cells in a nano-

liter emulsion droplet containing lysis buffer and beads coat-

ed with barcoded RT primers was found to markedly in-

crease the number of cells to tens of thousands in a single 

run (Klein et al., 2015; Macosko et al., 2015; Zheng et al., 

2017a). 

The molecular barcoding approach for reducing amplifica-

tion bias in PCR or in vitro transcription introduces a ran-

domly synthesized oligonucleotide known as a unique mo-

lecular identifier (UMI) into RT primers (Islam et al., 2014). 

During RT, each cDNA is labeled with a UMI; thus, the num-

ber of cDNAs of a gene before amplification can be inferred 

by counting the number of distinct UMIs mapped to the 

gene, eliminating amplification bias. 

 

Further improvements for sensitivity and throughput 
These two barcoding strategies have become the standard 

in recently developed methods for scRNA-seq, which had 

already been improved compared with early protocols in 

terms of sensitivity and throughput. For most protocols, the 

sensitivity of recovering mRNA molecules present in a single 

cell is ~3–20% (Papalexi and Satija, 2018). Inefficient RT is 

responsible for such low capture rates; therefore, considera-

ble effort has been devoted to increasing cDNA yield 

through optimization of RT enzymes (Hashimshony et al., 

2016), buffer conditions (Picelli et al., 2013; Sasagawa et al., 

2018), primers (Hashimshony et al., 2016; Picelli et al., 

2013; Sasagawa et al., 2018), the subsequent amplification 

step (Bagnoli et al., 2018; Picelli et al., 2013), and reaction 

volume (Hashimshony et al., 2016). The most effective ap-

proach for improving sensitivity is to reduce the effective 

reaction volume, either by implementing nanoliter reactors 

in a microfluidics device (Hashimshony et al., 2016) or add-

ing macromolecular crowding agents (Bagnoli et al., 2018). 

For example, the molecular crowding single-cell RNA bar-

coding and sequencing (mcSCRB-seq) protocol achieved 

2.5-fold increase in sensitivity compared with its previous 

version by combining macromolecular crowding and opti-

mized amplification (Bagnoli et al., 2018). 

Increasing the number of cells to be profiled is essential for 

the unbiased characterization of cellular heterogeneity with-

in a population of cells. Two different approaches have been 

developed to improve cell throughput in plate-based meth-

ods. In the first approach, instead of sorting each cell into an 

individual well of a microplate by FACS or manual picking, a 

cell suspension is randomly loaded into an array of ~100,000 

microwells that accommodate one cell and one bead coated 

with barcoded RT primers (Gierahn et al., 2017; Han et al., 

2018), increasing throughput in each experiment to tens of 

thousands of cells. In contrast to these approaches, which 

increase the number of wells in a microplate, a new ap-

proach was developed based on combinatorial cell barcod-

ing (Cao et al., 2017; Rosenberg et al., 2018). In this tech-

nique, a suspension of cells passes through multiple rounds 

of split-pool barcoding in 96- or 384-well plates containing 

well-specific barcodes. In each round, fixed cells or nuclei are 

randomly loaded into individual wells and tagged with well-

specific barcodes through RT, ligation, or amplification. The 

split-pool barcoding approach does not require a special 

device for making droplets or microwells, and can multiplex 

multiple samples in a single experiment by loading each 

sample into different subsets of wells at the first round of 

combinatorial cell barcoding. However, this approach can 

only be applied to permeabilized fixed cells or nuclei. For 

droplet-based methods, there is no upper limit on the num-

ber of cells that can be captured, at least in theory, but typi-

cally 1,000–10,000 cells are captured in one run reducing 

the probability of capturing two or more cells in a droplet 

(called “doublets”). If multiple samples labeled with unique 

molecular features are pooled and doublets are demulti-

plexed according to their molecular features, the throughput 

of cells can be increased, facilitating concurrent processing 

of multiple samples in a single experiment and minimizing 

technical batch effects of droplet-based methods. Several 

molecular features have been developed for demultiplexing 

doublets, including natural genetic variation of individuals 

(Kang et al., 2018) and lipid-modified oligonucleotides tar-

geted to the plasma membrane (McGinnis et al., 2018). 

 

Integration 
To define the detailed molecular state of cells, we need to 

measure multiple molecular readouts and their interplay 

from the same single cell. Since the type and state of cells 

are usually defined by the cells’ transcriptomes, and the pro-

tocols for profiling the single-cell transcriptome of polyad-

enylated mRNAs are the most developed among single-cell 

omics technologies, considerable effort has been applied to 

combining the single-cell transcriptome with other molecu-

lar readouts in the same single cell (Chappell et al., 2018). 

Several methods that simultaneously profile genomic DNA 

and mRNA from the same single cell, including DNA-RNA 

sequencing (DR-seq) (Dey et al., 2015) and genome and 

transcriptome sequencing (G&T-seq)(Macaulay et al., 2015), 
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have been developed for linking genomic variation with 

transcriptomic heterogeneity. DNA methylation (Anger-

mueller et al., 2016; Hu et al., 2016) has also been integrat-

ed with the transcriptome to reveal the interplay between 

the epigenome and transcriptome at single-cell resolution. 

Recent single-cell multiomics methods have combined more 

than two genomic and epigenomic layers with the transcrip-

tome. For example, single-cell triple-omics sequencing 

(scTrio-seq) profiles genomic copy number variation, DNA 

methylation, and the transcriptome of a single cell (Hou et 

al., 2016). Another method, scNMT-seq, combines the two 

epigenomic features of DNA methylation and chromatin 

accessibility with the transcriptome of a single cell (Clark et 

al., 2018). Single-cell multiomics technologies have not been 

applied to a large number of cells, because they require 

manually separating the transcriptome library from the ge-

nome or epigenome library. A recent method based on the 

split-pool barcoding approach integrated the transcriptome 

with chromatin accessibility in thousands of single cells, 

demonstrating the feasibility of high-throughput single-cell 

multiomics technologies (Cao et al., 2018). 

The technologies for single-cell proteomics are still in their 

infancy because the methods for shotgun proteomics, such 

as liquid chromatography and tandem mass spectrometry 

(LC-MS/MS), require a large amount of input material and it 

is not possible to amplify proteins (Bantscheff et al., 2012; 

Budnik et al., 2018). Most protocols for single-cell protein 

quantification use high-affinity antibodies to measure the 

expression levels of a small number of targeted proteins. 

These antibodies are usually conjugated with fluorophores 

for flow cytometry (Perfetto et al., 2004), metal isotopes for 

mass cytometry (Spitzer and Nolan, 2016), or DNA barcode 

sequences for quantitative PCR or sequencing (Ullal et al., 

2014). The idea of using DNA barcode-conjugated antibod-

ies has been extended to develop methods for jointly profil-

ing the transcriptome and expression levels of targeted cell 

surface proteins in single cells (Peterson et al., 2017; 

Stoeckius et al., 2017). 

 

COMPUTATIONAL ANALYSIS OF SCRNA-SEQ DATA 
 

As scRNA-seq has become a well-established method for 

dissecting cellular heterogeneity in complex tissues, the as-

sociated computational tools necessary for analyzing single-

cell transcriptomic data continue to be designed and devel-

oped. As of November 2018, 325 tools have been deposited 

at the scRNA-tools database (www.scRNA-tools.org), and 

the number of tools being added is growing exponentially 

(Zappia et al., 2018). Compared with the analysis of bulk 

RNA-seq, scRNA-seq data analysis has several unique fea-

tures. First, the gene-by-cell count matrix is very sparse ow-

ing to inefficient capture rates of mRNA molecules and low 

sequencing depth per cell, which results in higher technical 

variability in gene expression across cells. Second, tens of 

thousands of single cells are analyzed in a typical single-cell 

experiment, whereas the number of samples in bulk RNA-

seq is usually three per condition, highlighting the importance 

of computational efficiency in tools for analyzing scRNA-seq 

data. Third, since the type and state of each cell are generally 

unknown, the expectation is that such information will be 

inferred from scRNA-seq data through unsupervised analysis, 

such as visualization and cell type identification. However,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Computational workflow for analyzing scRNA-seq data. 
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for bulk RNA-seq data, in which the class label of each sam-

ple is known a priori, genes that are differentially expressed 

between classes are usually identified through supervised 

analysis and hypothesis testing. Finally, there are single-cell–

specific biological questions that cannot be addressed by 

bulk-level analysis. For example, it is possible to infer how 

individual tissue stem cells differentiate into multiple lineages 

during tissue homeostasis by estimating the ordering of cells 

along differentiation trajectories from a mixture of cells with 

heterogeneous differentiation states. The workflow of 

scRNA-seq data analysis includes four steps: data generation, 

data preprocessing, exploratory analysis, and heterogeneity 

analysis (Fig. 1). 

 

Data generation: generating a count matrix 
The basic pipeline for generating a gene-by-cell count matrix 

from high-throughput scRNA-seq data consists of four 

common steps: barcode processing, read mapping, gene 

counting, and cell filtering. Several tools have been devel-

oped for this purpose, including Cell Ranger (Zheng et al., 

2017a), UMI-tools (Smith et al., 2017), umis (Svensson et al., 

2017), ESAT (Derr et al., 2016), dropEst (Petukhov et al., 

2018), scPipe (Tian et al., 2018) and zUMIs (Parekh et al., 

2018). In the first step (barcode processing), we reformat 

each read pair in paired-end FASTQ files by trimming the CB 

and UMI from one read and adding this information to the 

sequence identifier line of the other read in the pair. Se-

quencing errors introduced into CBs and UMIs can optionally 

be corrected by filtering out read pairs with low-quality CBs 

and UMIs according to Phred quality scores. The reformatted 

reads are then mapped to the genome or transcriptome 

using any of the popular aligners developed for bulk RNA-

seq data. Exon mapped reads from output BAM files are 

assigned to genes by a gene annotation GTF file and demul-

tiplexed by CBs. For single-nuclei RNA-seq data, in which 

precursor mRNAs are abundant, both exon and intron 

mapped reads can be considered in gene counting to im-

prove the number of detected genes (Parekh et al., 2018). 

PCR duplicates are removed by collapsing reads that are 

assigned to the same gene and share an identical UMI. Op-

tionally, both sequencing and amplification errors in UMI 

sequences can be accounted for by collapsing UMIs if their 

edit distance is small and one UMI has a much higher read 

count than others. UMI-tools (Smith et al., 2017) uses a 

more elaborate method for UMI collapsing. It constructs UMI 

networks in which each node is labeled with a UMI se-

quence and read count, and two nodes are connected if 

their edit distance is 1. UMI collapsing is done by detecting 

modules in UMI networks based on adjacency and read 

counts. 

After demultiplexing CBs and collapsing UMIs, a raw count 

matrix is obtained in which only a subset of CBs corresponds 

to intact cells. In plate-based protocols, CBs for intact cells 

can easily be identified and sequence errors in CBs can be 

corrected by comparing them with a list of known well-

specific CBs. In droplet-based protocols, multiple heuristic 

methods have been proposed for filtering out CBs that cor-

respond to empty droplets. The most popular method is to 

detect the threshold at the “knee point” in the barcode rank 

plot, where all cell barcodes are sorted by the total UMI 

counts in descending order. All CBs with a total UMI count 

less than the threshold are considered empty droplets and 

discarded (Macosko et al., 2015; Zheng et al., 2017b). Emp-

ty droplets contain cell-free transcripts in the cell suspension, 

which is the major source of non-zero total UMI counts for 

these CBs. A recent method has proposed a statistical 

framework for testing whether a CB is significantly different 

from cell-free transcript profiles, and combined this testing 

framework with the knee point method (Lun et al., 2018). 

This approach is implemented in DropletUtils (Lun et al., 

2018) and Cell Ranger 3.0. If the expected number of cells is 

known, CBs can be discarded using a manually set threshold, 

and CBs corresponding to low-quality cells can be further 

filtered out based on multiple cell-level quality control (QC) 

metrics (Tian et al., 2018). 

It is essential to discard low-quality cells, such as damaged 

or dying cells to avoid unwanted variation and misleading 

results in downstream analyses driven by these cells (Ilicic et 

al., 2016). Two types of cell-level QC features are widely 

used to distinguish low- from high-quality cells (Ilicic et al., 

2016): (1) technical features that are proportional to total 

mRNA content, such as total UMI count, number of detect-

ed genes and proportion of reads mapped to spike-ins; and 

(2) biological features related with cell death or cell rupture, 

such as the proportion of reads that map to mitochondrial 

DNA. Although some methods use machine learning classi-

fiers to automatically detect low-quality cells (Ilicic et al., 

2016; Petukhov et al., 2018), the characteristics of low-

quality cells are data-specific. Therefore, it is still recom-

mended to visually inspect outliers corresponding to low-

quality cells, with the aid of multiple diagnostic plots of cell-

level QC metrics. Several tools, including scater (McCarthy et 

al., 2017) and scPipe (Tian et al., 2018), are available for 

computing QC metrics and visualizing them in diagnostic 

plots. 

 

Data preprocessing: normalization, imputation, and 
feature selection 
The next step is to estimate the true expression level of each 

gene in each cell by removing cell-specific biases in the gene-

by-cell count matrix. The assumption in this analysis is that 

the expected count of a gene in a cell is proportional to the 

product of the relative expression level of the gene and the 

cell-specific global scaling factor. The global scaling factor 

represents cell-specific systematic biases affected by cell-to-

cell differences in cell size, capture and RT efficiency, amplifi-

cation factor, dilution factor, and sequencing depth (Vallejos 

et al., 2017). Cell-specific biases can be removed by normal-

izing the raw counts within each cell by a single scaling fac-

tor, applied to all genes in a cell. The cell-specific scaling 

factor can be estimated based on library size (e.g., reads per 

million (RPM) or transcripts per kilobase million (TPM)(Li et 

al., 2010)), upper quantile values of counts (Bullard et al., 

2010), or normalization factors (e.g., size factor of DESeq 

(Anders and Huber, 2010) or trimmed mean of M-value of 

edgeR (Robinson and Oshlack, 2010)), developed for bulk 

RNA-seq normalization. However, normalization by library 

size is sensitive to a few highly expressed genes, and the 
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other normalization methods are problematic for sparse 

scRNA-seq data, since estimated scaling factors are unstable 

and inaccurate owing to zero inflation (Vallejos et al., 2017). 

Several normalization methods have been proposed for ro-

bustly estimating the cell-specific scaling factors in the pres-

ence of excessive zero counts (Lun et al., 2016a; Vallejos et 

al., 2015). For example, scran estimates pooled size factors 

from a pool of cells by summing expression values across 

these cells and then deconvolves the pooled size factors 

obtained from multiple pools to their cell-specific size factors 

(Lun et al., 2016a). 

A high frequency of zero counts, which is driven by sto-

chastic gene expression (Kim and Marioni, 2013), low 

mRNA capture efficiency and low sequencing depth, is a key 

characteristic of high-throughput scRNA-seq data. This zero 

inflation leads to high technical variability in gene expression, 

an effect that should be carefully accounted for in down-

stream analyses requiring accurate measurements of gene 

expression. Because global scaling normalization methods 

are unable to address this issue, computational approaches 

that recover the true expression levels of zero counts have 

been proposed (Chen and Zhou, 2018; Huang et al., 2018; 

Li and Li, 2018; van Dijk et al., 2018). These imputation 

methods take a normalized count matrix (usually log-

transformed) as input and replace input data with de-noised 

values, estimated by borrowing information across similar 

cells (Chen and Zhou, 2018; Li and Li, 2018; van Dijk et al., 

2018) or genes (Huang et al., 2018). These imputed expres-

sion values can be used to recover regulatory interactions 

between genes (Huang et al., 2018; van Dijk et al., 2018), 

increase the accuracy of estimates of cell-to-cell variability in 

gene expression (Huang et al., 2018), and improve cell clus-

tering and differential gene expression analysis (Chen and 

Zhou, 2018; Huang et al., 2018; Li and Li, 2018). However, 

despite the potential of these imputation methods to recov-

er true expression levels, it should be noted that all such 

methods introduce unexpected biases, including spurious 

gene-to-gene correlations, artificial cell subpopulation struc-

ture, and removal of rare cell types and transient cell states. 

Because these biases have not been rigorously examined, 

imputation should be applied with caution and is not includ-

ed in the general workflow for scRNA-seq data analysis. 

The normalized count matrix contains many genes whose 

expression levels are associated with a high level of technical 

noise. These genes mask the reliable detection of different 

cell types and states within a heterogeneous population of 

cells. It is necessary to filter out such genes to improve the 

extraction of biologically interesting patterns in the scRNA-

seq data, a process known as feature selection. The most 

widely used approach is to evaluate the biological cell-to-cell 

variability in the expression of each gene, and then take 

genes showing significantly high biological variability as in-

put in downstream unsupervised analyses such as visualiza-

tion and clustering (Brennecke et al., 2013; Lun et al., 

2016b; Vallejos et al., 2015). The key idea in evaluating bio-

logical variability is to decompose the observed variance of 

gene expression levels into its technical and biological com-

ponents according to the law of total variance. To estimate 

the technical variability, we assume that the mean technical 

variance of each gene is a nonlinear function of its mean 

expression level. The nonlinear function can be estimated by 

fitting a curve to the mean-variance data of external RNA 

spike-ins (Brennecke et al., 2013; Kim et al., 2015; Vallejos et 

al., 2015) or all endogenous genes, under the assumption 

that the observed variance of most genes is dominated by 

technical noise (Kolodziejczyk et al., 2015b; Lun et al., 

2016b). By subtracting the estimated technical variance 

from the observed variance, we can estimate the biological 

variance and choose highly variable genes that show signifi-

cant non-zero biological variance. 

 

Exploratory analysis: dimensionality reduction 
By selecting informative genes, such as highly variable genes, 

the dimension of scRNA-seq data is reduced to the number 

of chosen genes, but the results still suffer from high dimen-

sionality, which makes it difficult to comprehend and visual-

ize the patterns of cellular heterogeneity. Dimensionality 

reduction is performed to find a low-dimensional represen-

tation that preserves the relevant structure of the original 

high-dimensional data. In the context of scRNA-seq data 

analyses, two different relevant structures are considered: a 

local structure that preserves cell-to-cell distance within a 

local neighborhood of cells, and a global structure that pre-

serves cell-to-cell distance on the low-dimensional manifold 

associated with the underlying biological process. Capturing 

local structure in a low-dimensional representation is im-

portant for clustering cells of the same type or state close 

together. In contrast, capturing global structure is useful for 

preserving distance between clusters and revealing underly-

ing biological processes for cell-to-cell variability in gene ex-

pression. Principal component analysis (PCA), a linear meth-

od used for dimensionality reduction, projects high-

dimensional data onto a low-dimensional linear space by 

maximizing the variance of the projected data. PCA is also a 

popular method for data pre-processing since it removes 

redundancies among genes owing to its orthogonal linear 

projection. Many dimensionality reduction methods use PCA 

as a preprocessing step to reduce distortions incurred be-

cause of irrelevant dimensions in the calculation of pairwise 

distances between cells. 

Although PCA has been successfully applied to capture the 

global structure of cellular heterogeneity in low-throughput 

scRNA-seq data (Brennecke et al., 2013; Hashimshony et al., 

2012; Picelli et al., 2013; Shalek et al., 2013), it is limited by 

its frequent failure to visualize the local structure essential for 

cell clustering and cell type identification. This issue was ad-

dressed by introducing t-distributed stochastic neighbor 

embedding (t-SNE) (van der Maaten and Hinton, 2008) to 

the field of single-cell genomics (Amir et al., 2013). t-SNE is 

a nonlinear dimensionality reduction method for capturing 

the local structure in which dissimilar cells in the original 

high-dimensional space are modeled by large distances, and 

similar cells are modeled by small distances. Thus, t-SNE 

generates a low-dimensional representation in a two- or 

three-dimensional space displaying multiple isolated clusters. 

However, global structures, such as the distance between 

clusters, are not well captured in the t-SNE map. The current 

state-of-the-art method for dimensionality reduction that 
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captures both local and global structure in scRNA-seq data is 

uniform manifold approximation and projection (UMAP) 

(Becht et al., 2018; Mclnnes et al., 2018). It has been shown 

that UMAP is able to arrange clusters along differentiation 

trajectories and preserve a differentiation continuum of tran-

sient cells (Becht et al., 2018). Understanding the captured 

local and global structure in the low-dimensional representa-

tion can be facilitated by overlaying the expression of a 

marker gene or the activity of a set of genes associated with 

a biological process of interest on the two- or three-

dimensional map, a step that is useful for exploratory data 

analysis. 

 

Heterogeneity analysis: clustering and trajectory inference 
Two computational approaches for dissecting cellular heter-

ogeneity in scRNA-seq data have been developed based on 

the assumption that a latent variable generates the observed 

cell-to-cell variability: 1) a discrete latent variable approach 

that labels each cell with a discrete cluster indicator for cell 

type or state, and 2) a continuous latent variable approach 

that labels each cell with a continuous pseudotime for dif-

ferentiation trajectories The correct reference is (Wagner et 

al., 2016). 

The discrete latent variable approach can be formulated as 

an unsupervised clustering problem which has been exten-

sively studied in the field of statistics and machine learning. 

Diverse clustering algorithms, such as k-means, hierarchical, 

density-based, and graph-based clustering, have been ap-

plied to identify cell clusters in scRNA-seq data (Andrews 

and Hemberg, 2018; Kiselev et al., 2017; Satija et al., 2015). 

A number of considerations should be taken into account to 

ensure that each cluster is associated with a distinct cell type 

or state. First, selecting genes showing differential expres-

sion across multiple cell types is essential for improving the 

quality of clustering results. Such relevant genes can be iden-

tified by selecting genes that are highly variable across cells. 

Both feature selection and dimensionality reduction (e.g., 

PCA and t-SNE) can be sequentially applied to extract in-

formative features that are taken as input to clustering algo-

rithms (Andrews and Hemberg, 2018; Duo et al., 2018). 

Second, because the optimal number of clusters is depend-

ent on the definition of cell types or states and subjective 

clustering resolution, it cannot be generally estimated from 

data. It is generally recommended that the number of clus-

ters should be chosen by a user with domain-specific 

knowledge. Third, identifying rare cell types, such as stem 

cells and short-lived progenitors, in a heterogeneous popula-

tion requires careful examination of outliers within a large 

cluster (Grun et al., 2015) or selection of genes that are spe-

cifically expressed in a minor population of cells as features 

(Jiang et al., 2016). Fourth, if samples are processed in mul-

tiple batches and technical batch effects largely account for 

the observed variability, batch effects should be adjusted 

while preserving global structure. If the biological condition 

is not confounded by batch information, regression-based 

batch correction methods originally designed for bulk RNA-

seq can be applied (Buttner et al., 2017; Kolodziejczyk et al., 

2015b). However, in a confounded design, which is com-

mon in the droplet-based protocols, the batch correction 

methods regress out both biological and technical variability. 

One solution is to project the expression profile of each cell 

to a feature space by calculating the correlation coefficient 

between the expression vector of single cells and the expres-

sion vector of the reference bulk panel of diverse cell types 

(Li et al., 2017). Although this approach improves clustering 

accuracy in the presence of batch effects, obtaining a refer-

ence panel that contains all cell types of single cells is not 

straightforward. A more general strategy is to merge multi-

ple scRNA-seq data with shared subpopulations using ca-

nonical correlation analysis (Butler et al., 2018) or by identi-

fying mutual nearest neighbors (Haghverdi et al., 2018). 

Finally, the identified clusters are annotated as cell types or 

states using the expression of known marker genes. To au-

tomate this annotation, researchers have developed correla-

tion-based scoring methods (Aran et al., 2019; Kiselev et al., 

2018) or machine learning classifiers (Alavi et al., 2018; 

Alquicira-Hernandez et al., 2018) with the aid of reference 

bulk transcriptomes (Aran et al., 2019) or reference single-

cell transcriptomes (Alavi et al., 2018; Alquicira-Hernandez 

et al., 2018; Kiselev et al., 2018). The identity of cell clusters 

can also be inferred by examining differentially expressed 

genes across cell clusters and their enriched functional cate-

gories of genes. Although statistical methods designed for 

differential expression analysis in scRNA-seq have been de-

veloped (Finak et al., 2015; Kharchenko et al., 2014), their 

performance is comparable or sometimes inferior to meth-

ods designed for bulk RNA-seq or general purpose two-

sample tests, such as the t-test and Wilcoxon rank sum test 

(Soneson and Robinson, 2018). 

The continuous latent variable approach, pioneered by 

Monocle (Trapnell et al., 2014), is referred to as trajectory 

inference or pseudotemporal ordering. The main assump-

tion underlying this approach is that there exists a dynamic 

cellular process that shapes the transcriptional landscape and 

each individual cell can be placed along the process. Many 

dynamic cellular processes, including differentiation (Velten 

et al., 2017), reprogramming (Treutlein et al., 2016), and cell 

cycling (Kowalczyk et al., 2015), continuously progress along 

single or multiple trajectories, passing through transient cell 

states. The temporal progression of each cell along these 

trajectories, termed pseudotime, is the continuous latent 

variable that is inferred from data. If a large number of cells 

covering transient states are sampled from a mixed popula-

tion of cells whose cell-to-cell variability is largely driven by a 

given cellular process, trajectories can be accurately recon-

structed. Over the last 4 years, more than 60 computational 

tools have been developed for pseudotemporal ordering 

(Zappia et al., 2018). Most of these tools operate based on 

the assumption that cells showing similar expression profiles 

should be placed close together on the same trajectories 

(Kester and van Oudenaarden, 2018). They use a recurring 

framework that consists of two steps: 1) constructing a low-

dimensional representation of cells, and 2) modeling trajec-

tories with graphs or curves in the low-dimensional repre-

sentation (Cannoodt et al., 2016). 

In the first step, two different classes of representation are 

used: (1) a two- or three-dimensional feature space gener-

ated using dimensionality reduction algorithms, and (2) a k-



Dissecting Cellular Heterogeneity Using scRNA-seq 
Yoon Ha Choi & Jong Kyoung Kim 

 
 

Mol. Cells 2019; 42(3): 189-199  195 

 
 

nearest neighbor graph (k-NNG) in which each cell is repre-

sented as a node and each node is linked with its k nearest 

neighbors. The low-dimensional feature space can be con-

structed by applying diverse dimensionality reduction algo-

rithms, including PCA (Shin et al., 2015), independent com-

ponent analysis (Trapnell et al., 2014), t-SNE (Marco et al., 

2014), diffusion map (Haghverdi et al., 2016), or UMAP 

(Becht et al., 2018), after selecting genes relevant to the 

cellular process of interest. In principle, algorithms that pre-

serve the global structure in the low-dimensional feature 

space, such as diffusion map and UMAP, should be used. 

The k-NNG is usually constructed after projecting cells to the 

low-dimensional feature space using dimensionality reduc-

tion methods (Bendall et al., 2014; Setty et al., 2016). For 

better visualization, k-NNGs can be arranged in a two-

dimensional space using the force-directed layout embed-

ding (Briggs et al., 2017; Schiebinger et al., 2017). For fea-

ture selection, there is no consensus on the best practice for 

selecting genes that are informative with respect to con-

structing the low-dimensional representation. Widely used 

criteria for this process include highly expressed genes, high-

ly variable genes across cells, differentially expressed genes 

across cell clusters (Qiu et al., 2017; Trapnell et al., 2014), 

genes that show gradual changes within a local neighbor-

hood (Welch et al., 2016), and a set of known genes related 

to the cellular process. 

In the second step of modeling trajectories, a backbone of 

trajectories is constructed with graphs or curves in the low-

dimensional representation, and then the pseudotime of 

cells is evaluated by projecting cells onto the backbone. Con-

structing the backbone, which usually requires prior infor-

mation, such as the structure of trajectories and a root cell 

with a pseudotime of 0, is the key step for determining the 

accuracy of inferred trajectories. Early methods fixed the 

structure of trajectories as linear(Bendall et al., 2014; Shin et 

al., 2015) or bifurcating (Haghverdi et al., 2016; Setty et al., 

2016). A more complex structure of trajectories is difficult to 

correctly reconstruct from data, since it becomes more sensi-

tive to outlier cells, requires more prior information, and 

needs sampling of a sufficient number of cells. The most 

widely used strategy for addressing this issue is to group cells 

into clusters that represent distinct cell types or states. The 

backbone is constructed by linking clusters, and the trajecto-

ries are inferred by specifying the start clusters (Street et al., 

2018), both start and end clusters (Lummertz da Rocha et al., 

2018), or all clusters on a given trajectory (Wolf et al., 2018). 

Several methods for identifying the least differentiated cells 

(or stem cells) have been proposed for facilitating construc-

tion of the backbone (Grun et al., 2016; Teschendorff and 

Enver, 2017). In addition, the direction and the speed of 

differentiation can be inferred from RNA velocity, but this is 

sensitive to the set of input genes (La Manno et al., 2018). 

After reconstructing trajectories, the dynamics of gene regu-

lation along the inferred trajectories can be analyzed (Aibar 

et al., 2017). 

 

FUTURE DEVELOPMENTS 
 

Over the past decade, technologies for single-cell tran-

scriptomics have emerged as essential tools for dissecting 

cellular heterogeneity in individual tissues. Rapid technologi-

cal advances are expected to expand the breadth and depth 

of the application of scRNA-seq. Comprehensive tran-

scriptomic reference maps of all cell types in the body of 

diverse organisms, including humans (Luo et al., 2017) and 

mice (Han et al., 2018; Tabula Muris et al., 2018), are being 

constructed to provide a systematic framework for under-

standing the molecular characteristics of cell types or states, 

cellular trajectories and molecular mechanisms of develop-

ment and differentiation, and regulatory interactions be-

tween cells. A more in-depth single-cell transcriptomic analy-

sis that profiles non-mRNA species, such as microRNAs (Fa-

ridani et al., 2016) or full-length mRNA isoforms (Gupta et 

al., 2018), within a single cell is also being actively developed. 

Integrating the transcriptome with multiple omics (Chappell 

et al., 2018), genotypes (Dixit et al., 2016; Jaitin et al., 2016), 

cellular phenotypes (Cadwell et al., 2016; Fuzik et al., 2016), 

lineage tracing (Kester and van Oudenaarden, 2018), and 

spatial information (Lein et al., 2017) within the same cell is 

another active area of ongoing research. In parallel with 

technological advances, computational methods that inte-

grate diverse molecular and cellular information from the 

same cell and infer hidden biological structures from large-

scale single-cell data should be developed. 
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