DOI QR코드

DOI QR Code

Algal genomics perspective: the pangenome concept beyond traditional molecular phylogeny and taxonomy

  • Lee, JunMo (Department of Oceanography, Kyungpook National University)
  • Received : 2021.04.05
  • Accepted : 2021.04.21
  • Published : 2021.05.31

Abstract

Algal genomics approaches provide a massive number of genome/transcriptome sequences and reveal the evolutionary history vis-à-vis primary and serial endosymbiosis events that contributed to the biodiversity of photosynthetic eukaryotes in the eukaryote tree of life. In particular, phylogenomic methods using several hundred or thousands of genes have provided new insights into algal taxonomy and systematics. Using this method, many novel insights into algal species diversity and systematics occurred, leading to taxonomic revisions. In addition, horizontal gene transfers (HGTs) of functional genes have been identified in algal genomes that played essential roles in environmental adaptation and genomic diversification. Finally, algal genomics data can be used to address the pangenome, including core genes shared among all isolates and partially shared strain-specific genes. However, some aspects of the pangenome concept (genome variability of intraspecies level) conflict with population genomics concepts, and the issue is closely related to defining species boundaries using genome variability. This review suggests a desirable future direction to merge algal pangenomics and population genomics beyond traditional molecular phylogeny and taxonomy.

Keywords

Acknowledgement

The author thanks for technical supports of light microscope works to Hyun Shik Cho (Marine Ecological Genomics Lab., Department of oceanography, Kyungpook National University, Daegu).

References

  1. Adl, S.M., A.G. Simpson, M.A. Farmer, R. Andersen, O.R. Anderson, J.R. Barta, S.S. Bowser, G. Brugerolle, R.A. Fensome, S. Fredericq, T.Y. James, S. Karpov, P. Kugrens, J. Krug, C.E. Lane, L.A. Lewis, J. Lodge, D.H. Lynn, D.G. Mann, R.M. McCourt, L. Mendoza, O. Moestrup, S.E. Mozley-Standridge, T.A. Nerad, C.A. Shearer, A.V. Smirnov, F.W. Spiegel and M.F. Taylor. 2005. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. Journal of Eukaryotic Microbiology 52(5):399-451. https://doi.org/10.1111/j.1550-7408.2005.00053.x
  2. Azarian, T., I.T. Huang and W.P. Hanage. 2020. Structure and dynamics of bacterial populations: pangenome ecology. In: H. Tettelin and D. Medini (eds.), The pangenome: diversity, dynamics and evolution of genomes, Springer, Cham, Switzerland. pp. 115-128.
  3. Barth, J.M.I., C. Gubili, M. Matschiner, O.K. Torresen, S. Watanabe, B. Egger, Y.S. Han, E. Feunteun, R. Sommaruga, R. Jehle and R. Schabetsberger. 2020. Stable species boundaries despite ten million years of hybridization in tropical eels. Nature Communications 11:1433. https://doi.org/10.1038/s41467-020-15099-x
  4. Bengtson, S., T. Sallstedt, V. Belivanova and M. Whitehouse. 2017. Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PloS Biology 15(3):e2000735. https://doi.org/10.1371/journal.pbio.2000735
  5. Bennetzen, J.L. and H. Wang. 2014. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annual Review of Plant Biology 65:505-530. https://doi.org/10.1146/annurev-arplant-050213-035811
  6. Bhattacharya, D., H.S. Yoon and J.D. Hackett. 2004. Photosynthetic eukaryotes unite: endosymbiosis connects the dots. BioEssays 26:50-60. https://doi.org/10.1002/bies.10376
  7. Bhattacharya, D. and D.C. Price. 2020. The algal tree of life from a genomics perspective. In: A.W.D. Larkum, A.R. Grossman and J.A. Raven (eds.), Photosynthesis in algae: biochemical and physiological mechanisms, Springer, Cham, Switzerland. pp. 11-24.
  8. Bobay, L.M. 2020. The prokaryotic species concept and challenges. In: H. Tettelin and D. Medini (eds.), The pangenome: diversity, dynamics and evolution of genomes, Springer, Cham, Switzerland. pp. 21-49.
  9. Brawley, S.H., N.A. Blouin, E. Ficko-Blean, G.L. Wheeler, M. Lohr, H.V. Goodson, J.W. Jenkins, C.E. Blaby-Haas, K.E. Helliwell, C.X. Chan, T.N. Marriage, D. Bhattacharya, A.S. Klein, Y. Badis, J. Brodie, Y. Cao, J. Collen, S.M. Dittami, C.M.M. Gachon, B.R. Green, S.J. Karpowicz, J.W. Kim, U.J. Kudahl, S. Lin, G. Michel, M. Mittag, B.J.S.C. Olson, J.L. Pangilinan, Y. Peng, H. Qiu, S. Shu, J.T. Singer, A.G. Smith, B.N. Sprecher, V. Wagner, W. Wang, Z.Y. Wang, J. Yan, C. Yarish, C. Zauner-Riek, Y. Zhuang, Y. Zou, E.A. Lindquist, J. Grimwood, K.W. Barry, D.S. Rokhsar, J. Schmutz, J.W. Stiller, A.R. Grossman and S.E. Prochnik. 2017. Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Proceedings of the National Academy of Sciences of the USA 114(31): E6361-6370. https://doi.org/10.1073/pnas.1703088114
  10. Brodie, J., S.G. Ball, F.Y. Bouget, C.X. Chan, O. De Clerck, J.M. Cock, C. Gachon, A.R. Grossman, T. Mock, J.A. Raven, M. Saha, A.G. Smith, A. Vardi, H.S. Yoon and D. Bhattacharya. 2017. Biotic interactions as drivers of algal origin and evolution. New Phytologist 216(3):670-681. https://doi.org/10.1111/nph.14760
  11. Bryand, D.A. and D.P. Canniffe. 2018. How nature designs light-harvesting antenna systems: design principles and functional realization in chlorophototrophic prokaryotes. Journal of Physics B: Atomic, Molecular and Optical Physics 51(3):033001. https://doi.org/10.1088/0953-4075/51/3/033001
  12. Burki, F., N. Okamoto, J.F. Pombert and P.J. Keeling. 2012. The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proceedings of the Royal Society B: Biological Sciences 279(1736):2246-2254. https://doi.org/10.1098/rspb.2011.2301
  13. Burki, F., A.J. Roger, M.W. Brown and A.G.B. Simpson. 2019. The new tree of eukaryotes. Trends in Ecology & Evolution 31(1):43-55.
  14. Butterfield, N.J. 2000. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26(3):386-404. https://doi.org/10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2
  15. Chan, C.X., E.C. Yang, T. Banerjee, H.S. Yoon, P.T. Martone, J.M. Estevez and D. Bhattacharya. 2011. Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes. Current Biology 21(4): 328-333. https://doi.org/10.1016/j.cub.2011.01.037
  16. Collen, J., B. Porcel, W. Carre, S.G. Ball, C. Chaparro, T. Tonon, T. Barbeyron, G. Michel, B. Noel, K. Valentin, M. Elias, F. Artiguenave, A. Arun, J.M. Aury, J.F. Barbosa-Neto, J.H. Bothwell, F.Y. Bouget, L. Brillet, F. Cabello-Hurtado, S. Capella-Gutierrez, B. Charrier, L. Cladiere, J.M. Cock, S.M. Coelho, C. Colleoni, M. Czjzek, C.D. Silva, L. Delage, F. Denoeud, P. Deschamps, S.M. Dittami, T. Gabaldon, C.M.M. Gachon, A. Groisillier, C. Herve, K. Jabbari, M. Katinka, B. Kloareg, N. Kowalczyk, K. Labadie, C. Leblanc, P.J. Lopez, D.H. McLachlan, L. Meslet-Cladiere, A. Moustafa, Z. Nehr, P.N. Collen, O. Panaud, F. Partensky, J. Poulain, S.A. Rensing, S. Rousvoal, G. Samson, A. Symeonidi, J. Weissenbach, A. Zambounis, P. Wincker and C. Boyen. 2013. Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proceedings of the National Academy of Sciences of the USA 110(13):5247-5252. https://doi.org/10.1073/pnas.1221259110
  17. Costa, J.F., S.M. Lin, E.C. Macaya, C. Fernandez-Garcia and H. Verbruggen. 2016. Chloroplast genomes as a tool to resolve red algal phylogenies: a case study in the Nemaliales. BMC Evolutionary Biology 16:205. https://doi.org/10.1186/s12862-016-0772-3
  18. Cummins, C.A. and J.O. Mclnerney. 2011. A method for inferring the rate of evolution of homologous characters that can potentially improve phylogenetic inference, resolve deep divergence and correct systematic biases. Systematic Biology 60(6):833-844. https://doi.org/10.1093/sysbio/syr064
  19. de Vries, J., A. Stanton, J.M. Archibald and S.B. Gould. 2016. Streptophyte terrestrialization in light of plastid evolution. Trends in Plant Science 21(6):467-476. https://doi.org/10.1016/j.tplants.2016.01.021
  20. de Vries, J. and S.B. Gould. 2018. The monoplastidic bottleneck in algae and plant evolution. Journal of Cell Science 131(2):jcs203414. https://doi.org/10.1242/jcs.203414
  21. Diaz-Tapia, P., C.A. Maggs, J.A. West and H. Verbruggen. 2017. Analysis of chloroplast genomes and a supermatrix inform reclassification of the Rhodomelaceae (Rhodophyta). Journal of Phycology 53(5):920-937. https://doi.org/10.1111/jpy.12553
  22. Diaz-Tapia, P., C.A. Maggs, E.C. Macaya and H. Verbruggen. 2018. Widely distributed red aglae often represent hidden introductions, complexes of cryptic species or species with strong phylogeographic structure. Journal of Phycology 54(6):829-839. https://doi.org/10.1111/jpy.12778
  23. Diaz-Tapia, P., M.M. Pasella, H. Verbruggen and C.A. Maggs. 2019. Morphological evolution and classification of the red algal order Ceramiales inferred using plastid phylogenomics. Molecular Phylogenetics and Evolution 137:76-85. https://doi.org/10.1016/j.ympev.2019.04.022
  24. Dorrell, R.G., G. Gile, G. McCallum, R. Meheust, E.P. Bapteste, C.M. Klinger, L. Brillet-Gueguen, K.D. Freeman, D.J. Richter and C. Bowler. 2017. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 6:e23717. https://doi.org/10.7554/eLife.23717
  25. Edge, M.D. and G. Coop. 2019. Reconstructing the history of polygenic scores using coalescent trees. Genetics 211:235-262. https://doi.org/10.1534/genetics.118.301687
  26. Fan, X., H. Qiu, W. Han, Y. Wang, D. Xu, X. Zhang, D. Bhattacharya and N. Ye. 2020. Phytoplankton pangenome reveals extensive prokaryotic horizontal gene transfer of diverse functions. Science Advances 6(18):eaba0111. https://doi.org/10.1126/sciadv.aba0111
  27. Fehrer, J., B. Gemeinholzer and J.B.S. Chrtek. 2007. Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae). Molecular Phylogenetics and Evolution 42(2):347-361. https://doi.org/10.1016/j.ympev.2006.07.004
  28. Freshwater, D.W., S. Fredericq, B.S. Butler, M.H. Hommersand and M.W. Chase. 1994. A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL. Proceedings of the National Academy of Sciences of the USA 91(15): 7281-7285. https://doi.org/10.1073/pnas.91.15.7281
  29. Gabrielson, P.W., D.J. Garbary and R.F. Scagel. 1985. The nature of the ancestral red alga: inferences from a cladistic analysis. BioSystems 18(3-4):335-346. https://doi.org/10.1016/0303-2647(85)90033-4
  30. Gawryluk, R.M.R., D.V. Tikhonenkov, E. Hehenberger, F. Husnik, A.P., Mylniknov and P.J. Keeling. 2019. Non-photosynthetic predators are sister to red algae. Nature 572(7768):240-243. https://doi.org/10.1038/s41586-019-1398-6
  31. Gibson, T.M., P.M. Shih, V.M. Cumming, W.W. Fischer, P.W. Crockford, M.S.W. Hodgskiss, S. Worndle, R.A. Creaser, R.H. Rainbird, T.M. Skulski and G.P. Halverson. 2018. Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46(2):135-138. https://doi.org/10.1130/G39829.1
  32. Giovagnetti, V. and A.V. Ruban. 2018. The evolution of the photoprotective antenna proteins in oxygenic photosynthetic eukaryotes. Biochemical Society Transaction 46(5): 1263-1277. https://doi.org/10.1042/BST20170304
  33. Godfroy, O., A.F. Peters, S.M. Coelho and J.M. Cock. 2015. Genome-wide comparison of ultraviolet and ethyl methanesulphonate mutagenesis methods for the brown alga Ectocarpus. Marine Genomics 24:109-113. https://doi.org/10.1016/j.margen.2015.03.007
  34. Golicz, A.A., P.E. Bayer, P.L. Bhalla, J. Batley and D. Edwards. 2020. Pangenomics comes of age: from bacteria to plant and animal applications. Trends in Genetics 36(2):132-145. https://doi.org/10.1016/j.tig.2019.11.006
  35. Gradinger, R. 2009. Sea-ice algae: major contributors to primary production and algal biomass in the Chukchi and Beaufort Seas during May/June 2002. Deep-Sea Research II 56(17):1201-1212. https://doi.org/10.1016/j.dsr2.2008.10.016
  36. Graf, L., E.C. Yang, K.Y. Han, F.C. Kupper, K.M. Benes, J.K. Oyadomari, R.J.H. Herbert, H. Verbruggen, R. Wetherbee, R.A. Andersen and H.S. Yoon. 2020. Multigene phylogeny, morphological observation and re-examination of the literature lead to the description of the Phaeosacciophyceae classis nova and four new species of the Heterokontophyta SI clade. Protist 171(6):125781. https://doi.org/10.1016/j.protis.2020.125781
  37. Graf, L., Y. Shin, J.H. Yang, J.W. Choi, I.K. Hwang, W. Nelson, D. Bhattacharya, F. Viard and H.S. Yoon. 2021. A genome-wide investigation of the effect of farming and human-mediated introduction on the ubiquitous seaweed Undaria pinnatifida. Nature Ecology & Evolution 5(3):360-368. https://doi.org/10.1038/s41559-020-01378-9
  38. Guiry, M.D. and G.M. Guiry. 2021. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org; searched on March 2021.
  39. Gulbrandsen, O.S., I.J. Andresen, A.K. Krabberod, J. Brate and K. Shalchian-Tabrizi. 2021. Phylogenomic analysis restructures the ulvophyceae. Journal of Phycology (accepted article).
  40. Hu, Y., W. Xing, Z. Hu and G. Liu. 2020. Phylogenetic analysis and substitution rate estimation of colonial volvocine algae based on mitochondrial genomes. Genes 11(1):115. https://doi.org/10.3390/genes11010115
  41. Huson, D.H. and D. Bryant. 2006. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23(3):254-267. https://doi.org/10.1093/molbev/msj030
  42. Iha, C., C.J. Grassa, G.D.M. Lyra, C.C. Davis, H. Verbruggen and M.C. Oliveira. 2018. Organellar genomics: a useful tool to study evolutionary relationships and molecular evolution in Gracilariaceae (Rhodophyta). Journal of Phycology 54(6):775-787. https://doi.org/10.1111/jpy.12765
  43. Jain, C., L.M. Rodriguez-R, A.M. Phillippy, K.T. Konstantinidis and S. Aluru. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature Communications 9:5114. https://doi.org/10.1038/s41467-018-07641-9
  44. Janouskovec, J., S.L. Liu, P.T. Martone, W. Carre, C. Leblanc, J. Collen and P.J. Keeling. 2013. Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers. PloS ONE 8(3):e59001. https://doi.org/10.1371/journal.pone.0059001
  45. Jarvis, E.D., S. Mirarab, A.J. Aberer, B. Li, P. Houde, C. Li, S.Y.W. Ho, B.C. Faircloth, B. Nabholz, J.T. Howard, A. Suh, C.C. Weber, R.R. da Fonseca, J. Li, F. Zhang, H. Li, L. Zhou, N. Narula, L. Liu, G. Ganapathy, B. Boussau, M.S. Bayzid, V. Zavidovych, S. Subramanian, T. Gabaldon, S. Capella-Gutierrez, J. Huerta-Cepas, B. Rekepalli, K. Munch, M. Schierup, B. Lindow, W.C. Warren, D. Ray, R.E. Green, M.W. Bruford, X. Zhan, A. Dixon, S. Li, N. Li, Y. Huang, E.P. Derryberry, M.F. Bertelsen, F.H. Sheldon, R.T. Brumfield, C.V. Mello, P.V. Lovell, M. Wirthlin, M.P.C. Schneider, F. Prosdocimi, J.A. Samaniego, A.M.V. Velazquez, A. Alfaro-Nunez, P.F. Compos, B. Petersen, T. Sicheritz-Ponten, A. Pas, T. Bailey, P. Scofield, M. Bunce, D.M. Lambert, Q. Zhou, P. Perelman, A.C. Driskell, B. Shapiro, Z. Xiong, Y. Zeng, S. Liu, Z. Li, B. Liu, K. Wu, J. Xiao, X. Yinqi, Q. Zheng, Y. Zhang, H. Yang, J. Wang, L. Smeds, F.E. Rheindt, M. Braun, J. Fjeldsa, L. Orlando, F.K. Barker, K.A. Jonsson, W. Johnson, K.P. Keopfli, S. O'Brien, D. Haussler, O.A. Ryder, C. Rahbek, E. Willerslev, G.R. Graves, T.C. Glenn, J. McCormack, D. Burt, H. Ellegren, P. Alstrom, S.V. Edwards, A. Stamatakis, D.P. Mindell, J. Cracraft, E.L. Braun, T. Warnow, W. Jun, M.T.P. Gilbert and G. Zhang. 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346(6215):1320-1331. https://doi.org/10.1126/science.1253451
  46. Keeling, P.J. 2010. The endosymbiotic origin, diversification and fate of plastids. Philosophical Transactions of the Royal Society B: Biological Sciences 365(1541):729-748. https://doi.org/10.1098/rstb.2009.0103
  47. Keeling, P.J. and F. Burki. 2019. Progress towards the tree of eukaryotes. Current Biology 29(16):R808-R817. https://doi.org/10.1016/j.cub.2019.07.031
  48. Keeling, P.J., F. Burki, H.M. Wilcox, B. Allam, E.E. Allen, L.A. Amaral-Zettler, E.V. Armbrust, J.M. Archibald, A.K. Bharti, C.J. Bell, B. Beszteri, K.D. Bidle, C.T. Cameron, L. Campbell, D.A. Caron, R.A. Cattolico, J.L. Collier, K. Coyne, S.K. Davy, P. Deschamps, S.T. Dyhrman, B. Edvardsen, R.D. Gates, C.J. Gobler, S.J. Greenwood, S.M. Guida, J.L. Jacobi, K.S. Jakobsen, E.R. James, B. Jenkins, U. John, M.D. Johnson, A.R. Juhl, A. Kamp, L.A. Katz, R. Kiene, A. Kudryavtsev, B.S. Leander, S. Lin, C. Lovejoy, D. Lynn, A. Marchetti, G. McManus, A.M. Nedelcu, S. Menden-Deuer, C. Miceli, T. Mock, M. Montresor, M.A. Moran, S. Murray, G. Nadathur, S. Nagai, P.B. Ngam, B. Palenik, J. Pawlowski, G. Petroni, G. Piganeau, M.C. Posewitz, K. Rengefors, G. Romano, M.E. Rumpho, T. Rynearson, K.B. Schilling, D.C. Schroeder, A.G.B. Simpson, C.H. Slamovits, D.R. Smith, G.J. Smith, S.R. Smith, H.M. Sosik, P. Stief, E. Theriot, S.N. Twary, P.E. Umale, D. Vaulot, B. Wawrik, G.L. Wheeler, W.H. Wilson, Y. Xu, A. Zingone and A.Z. Worden. 2014. The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PloS Biology 12(6):e1001889. https://doi.org/10.1371/journal.pbio.1001889
  49. Kim, J.I., C.E. Moore, J.M. Archibald, D. Bhattacharya, G. Yi, H.S. Yoon and W. Shin. 2017. Evolutionary dynamics of cryptophyte plastid genomes. Genome Biology and Evolution 9(7):1859-1872. https://doi.org/10.1093/gbe/evx123
  50. Kumar, V., F. Lammers, T. Bidon, M. Pfenninger, L. Kolter, M.A. Nilsson and A. Janke. 2017. The evolutionary history of bears is characterized by gene flow across species. Scientific Reports 7:46487. https://doi.org/10.1038/srep46487
  51. Lee, J.M., C.H. Cho, S.I. Park, J.W. Choi, H.S. Song, J.A. West, D. Bhattacharya and H.S. Yoon. 2016a. Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants. BMC Biology 14:75. https://doi.org/10.1186/s12915-016-0299-5
  52. Lee, J.M., K.M. Kim, E.C. Yang, K.A. Miller, S.M. Boo, D. Bhattacharya and H.S. Yoon. 2016b. Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes. Scientific Reports 6:23744. https://doi.org/10.1038/srep23744
  53. Lee, J.M., H.J. Song, S.I. Park, Y.M. Lee, S.Y. Jeong, T.O. Cho, J.H. Kim, H.G. Choi, C.G. Choi, W.A. Nelson, S. Fredericq, D. Bhattacharya and H.S. Yoon. 2018a. Mitochondrial and plastid genomes from coralline red algae provide insights into the incongruent evolutionary histories of organelles. Genome Biology and Evolution 10(11):2961-2972. https://doi.org/10.1093/gbe/evy222
  54. Lee, J.M., E.C. Yang, L. Graf, J.H. Yang, H. Qiu, U. Zelzion, C.X. Chan, T.G. Stephens, A.P.M. Weber, G.H. Boo, S.M. Boo, K.M. Kim, Y. Shin, M. Jung, S.J. Lee, H.S. Yim, J.H. Lee, D. Bhattacharya and H.S. Yoon. 2018b. Analysis of the draft genome of the red seaweed Gracilariopsis chorda provides insights into genome size evolution in Rhodophyta. Molecular Biology and Evolution 35(8):1869-1886. https://doi.org/10.1093/molbev/msy081
  55. Lee, J.M., D. Kim, D. Bhattacharya and H.S. Yoon. 2019. Expansion of phycobilisome linker gene families in mesophilic red algae. Nature Communications 10:4823. https://doi.org/10.1038/s41467-019-12779-1
  56. Lhee, D., J.M. Lee, K. Ettahi, C.H. Cho, J.S. Ha, Y.F. Chan, U. Zelzion, T.G. Stephens, D.C. Price, A. Gabr, E.C.M. Nowack, D. Bhattacharya and H.S. Yoon. 2021. Amoeba Genome Reveals Dominant Host Contribution to Plastid Endosymbiosis. Molecular Biology and Evolution 38(2):344-357. https://doi.org/10.1093/molbev/msaa206
  57. MacGuigan, D.J., A.J. Geneva and R.E. Glor. 2017. A genomic assessment of species boundaries and hybridization in a group of highly polymorphic anoles(distichus species complex). Ecology and Evolution 7(11):3657-3671. https://doi.org/10.1002/ece3.2751
  58. Maddison, W.P. and L.L. Knowles. 2006. Inferring phylogeny despite incomplete lineage sorting. Systematic Biology 55(1):21-30. https://doi.org/10.1080/10635150500354928
  59. Mao, Y., S. Hou, J. Shi and E.P. Economo. 2020. TREEasy: an automated workflow to infer gene trees, species tress, and phylogenetic networks form multilocus data. Molecular Ecology Resources 20:832-840. https://doi.org/10.1111/1755-0998.13149
  60. Matteoli, F.P., H. Passarelli-Araujo, F. Pedrosa-Silva, F.L. Olivares and T.M. Venancio. 2020. Population structure and pangenome analysis Enterobacter bugandensis uncover the presence of blaCTX-M-55, blaNDM-5 and blaIMI-1, along with sophisticated iron acquisition strategies. Genomics 112(2):1182-1191. https://doi.org/10.1016/j.ygeno.2019.07.003
  61. Matute, D.R. and V.E. Sepulveda. 2019. Fungal species boundaries in the genomics era. Fungal Genetics and Biology 131:103249. https://doi.org/10.1016/j.fgb.2019.103249
  62. Medlin, L.K., K. Metfies, U. John and J.L. Olsen. 2007. Algal molecular systematics: a review of the past and prospects for the future. In: J. Brodie and J. Lewis (eds.), Unravelling the algae: the past, present, and future of algal systematics, Taylor and Francis, Boca Raton, Florida. pp. 341-353.
  63. Mercado, J.M., S. Salles and D. Cortes. 2020. Ecophysiology of marine algae: factors regulating primary production and growth in natural environments. In: S.K. Kim (ed.), Encyclopedia of marine biotechnology, John Wiley & Sons. pp. 341-357.
  64. Munoz-Gomez, S.A., F.G. Mejia-Franco, K. Durnin, M. Colp, C.J. Grisdale, J.M. Archibald and C.H. Slamovits. 2017. The new red algal subphylum Proteorhodophytina comprises the largest and most divergent plastid genomes known. Current Biology 27(11):1677-1684. https://doi.org/10.1016/j.cub.2017.04.054
  65. Nguyen, L.T., H.A. Schmidt, A. Von Haeseler and B.Q. Minh. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32(1):268-274. https://doi.org/10.1093/molbev/msu300
  66. Nowack, E.C.M., M. Melkonian and G. Glockner. 2008. Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Current Biology 18(6):410-418. https://doi.org/10.1016/j.cub.2008.02.051
  67. Oliveira, M.C., S.I. Repetti, C. Iha, C.J. Jackson, P. Diaz-Tapia, K.M.F. Lubiana, V. Cassano, J.F. Costa, M.C.M. Cremen, V.R. Marcelino and H. Verbruggen. 2018. High-throughput sequencing for algal systematics. European Journal of Phycology 53(3):256-272. https://doi.org/10.1080/09670262.2018.1441446
  68. Ono, J., D. Greig and P.J. Boynton. 2020. Defining and disrupting species boundaries in Saccharomyces. Annual Review of Microbiology 74:477-495. https://doi.org/10.1146/annurev-micro-021320-014036
  69. Parfrey, L.W., D.J.G. Lahr, A.H. Knoll and L.A. Katz. 2011. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proceedings of the National Academy of Sciences of the USA 108(33):13624-13629. https://doi.org/10.1073/pnas.1110633108
  70. Payo, D.A., F. Leliaert, H. Verbruggen, S. D'hondt, H.P. Calumpong and O. De Clerck. 2013. Extensive cryptic species diversity and fine-scale endemism in the marine red alga Portieria in the Philippines. Proceedings of the Royal Society B: Biological Sciences 280(1753):20122660. https://doi.org/10.1098/rspb.2012.2660
  71. Pirie, M.D. 2015. Phylogenies from concatenated data: is the end nigh? Taxon 64(3):421-423. https://doi.org/10.12705/643.1
  72. Ponce-Toledo, R., P. Deschamps, P. Lopez-Garcia, Y. Zivanovic, K. Benzerara and D. Moreira. 2017. An early-branching freshwater cyanobacterium at the origin of plastids. Current Biology 27(3):386-391. https://doi.org/10.1016/j.cub.2016.11.056
  73. Price, D.C., C.X. Chan, H.S. Yoon, E.C. Yang, H. Qiu, A.P.M. Weber, R. Schwacke, J. Gross, N.A. Blouin, C. Lane, A. Reyes-Prieto, D.G. Durnford, J.A.D. Neilson, B.F. Lang, G. Burger, J.M. Steiner, W. Looffelhardt, J.E. Meuser, M.C. Posewitz, S. Ball, M.C. Arias, B. Henrissat, P.M. Coutinho, S.A. Rensing, A. Symeonidi, H. Doddapaneni, B.R. Green, V.D. Rajah, J. Boore and D. Bhattacharya. 2012. Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science 355(6070):843-847.
  74. Ragan, M.A., C.J. Bird, E.L. Rice, R.R. Gutell, C.A. Murphy and R.K. Singh. 1994. A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene. Proceedings of the National Academy of Sciences of the USA 91(15):7276-7280. https://doi.org/10.1073/pnas.91.15.7276
  75. Read, B.A., J. Kegel, M.J. Klute, A. Kuo, S.C. Lefebvre, F. Maumus, C. Mayer, J. Miller, A. Monier, A. Salamov, J. Young, M. Aguilar, J.M. Claverie, S. Frickenhaus, K. Gonzalez, E.K. Herman, Y.C. Lin, J. Napier, H. Ogata, A.F. Sarno, J. Shmutz, D. Schroeder, C. de Vargas, F. Verret, P. von Dassow, K. Valentin, Y. Van de Peer, G. Sheeler, Emiliania huxleyi Annotation Consortium, J.B. Dacks, C.F. Delwiche, S.T. Dyhrman, G. Glockner, U. John, T. Richards, A.Z. Worden, X. Zhang and I.V. Grigoriev. 2013. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499(7457):209-213. https://doi.org/10.1038/nature12221
  76. Reyes-Prieto, A., H.S. Yoon, A. Moustafa, E.C. Yang, R.A. Andersen, S.M. Boo, T. Nakayama, K.I. Ishida and D. Bhattacharya. 2010. Differential gene retention in plastids of common recent origin. Molecular Biology and Evolution 27(7):1530-1537. https://doi.org/10.1093/molbev/msq032
  77. Rice, D.W. and J.D. Palmer. 2006. An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biology 4:31. https://doi.org/10.1186/1741-7007-4-31
  78. Richard, G.F. 2020. Eukaryotic pangenomes. In: H. Tettelin and D. Medini(eds.), The pangenome: diversity, dynamics and evolution of genomes, Springer, Cham, Switzerland. pp. 253-291.
  79. Rodriguez-Ezpeleta, N., H. Brinkmann, S.C. Burey, B. Roure, G. Burger, W. Loffelhardt, H.J. Bohnert, H. Philippe and B.F. Lang. 2005. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Current Biology 15(14):1325-1330. https://doi.org/10.1016/j.cub.2005.06.040
  80. Rokas, A., B.L. Williams, N. King and S.B. Carroll. 2003. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425(6960):798-804. https://doi.org/10.1038/nature02053
  81. Rossoni, A.W., D.C. Price, M. Seger, D. Lyska, P. Lammers, D. Bhattacharya and A.P.M. Weber. 2019. The genomes of polyextremophilic cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions. eLife 8:e45017. https://doi.org/10.7554/eLife.45017
  82. Rudd, S. 2003. Expressed sequence tags: alternative or complement to whole genome sequences? Trends in Plant Science 8(7):1360-1385. https://doi.org/10.1016/S1360-1385(03)00131-6
  83. Russell, S., C. Jackson and A. Reyes-Prieto. 2021. High sequence divergence but limited architectural rearrangements in organelle genomes of Cyanophora (Glaucophyta) species. Journal of Eukaryotic Microbiology 68:e12831.
  84. Sanchez-Baracaldo, P., J.A. Raven, D. Pisani and A.H. Knoll. 2017. Early photosynthetic eukaryotes inhabited low-salinity habitats. Proceedings of the National Academy of Sciences of the USA 114(37):E7737-7745. https://doi.org/10.1073/pnas.1620089114
  85. Saunders, G.W. and K.V. Lehmkuhl. 2005. Molecular divergence and morphological diversity among four cryptic species of Plocamium (Plocamiales, Florideophyceae) in norther Europe. European Journal of Phycology 40(3):293-312. https://doi.org/10.1080/09670260500192935
  86. Seeleuthner, Y., S. Mondy, V. Lombard, Q. Carradec, E. Pelletier, M. Wessner, J. Leconte, J.F. Mangot, J. Poulain, K. Labadie, R. Logares, S. Sunagawa, V. de Berardinis, M. Salanoubat, C. Dimier, S. Kandels-Lewis, M. Picheral, S. Searson, Tara Oceans Coordinators, S. Pesant, N. Poulton, R. Stepanauskas, P. Bork, C. Bowler, P. Hingamp, M.B. Sullivan, D. Iudicone, R. Massana, J.M. Aury, B. Henrissat, E. Karsenti, O. Jaillon, M. Sieracki, C. de Vargas and P. Wincker. 2018. Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nature Communications 9:310. https://doi.org/10.1038/s41467-017-02235-3
  87. Schliep, K., A.J. Potts, D.A. Morrison and G.W. Grimm. 2017. Intertwining phylogenetic trees and networks. Methods in Ecology and Evolution 8(10):1212-1220. https://doi.org/10.1111/2041-210X.12760
  88. Shapiro, B.J. 2017. The population genetics of pangenomes. Nature Microbiology 2(12):1574-1574. https://doi.org/10.1038/s41564-017-0066-6
  89. Shaw, K.L. 2002. Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: what mtDNA reveals and conceals about modes of speciation in Hawaiian crickets. Proceedings of the National Academy of Sciences of the USA 99(25):16122-16127. https://doi.org/10.1073/pnas.242585899
  90. Sibbald, S.J. and J.M. Archibald. 2020. Genomic insights into plastid evolution. Genome Biology and Evolution 12(7): 978-990. https://doi.org/10.1093/gbe/evaa096
  91. Simpson, A.G.B., C.H. Slamovits and J.M. Archibald. 2017. Protist diversity and eukaryote phylogeny. In: J.M. Archibald, A.G.B. Simpson and C.H. Slamovits (eds.), Handbook of the protists(2nd ed.), Springer International Publishing, Cham, Switzerland. pp. 1-21.
  92. Song, H.J., J.M. Lee, L. Graf, M. Rho, H. Qiu, D. Bhattacharya and H.S. Yoon. 2016. A novice's guide to analyzing NGS-derived organelle and metagenome data. Algae 31(2):137-154. https://doi.org/10.4490/algae.2016.31.6.5
  93. Strassert, J.F.H., M. Jamy, A.P. Mylnikov, D.V. Tikhonenkov and F. Burki. 2019. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life. Molecular Biology and Evolution 36(4):757-765. https://doi.org/10.1093/molbev/msz012
  94. Strassert, J.F.H., I. Irisarri, T.A. Williams and F. Burki. 2021. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nature Communications 12:1879. https://doi.org/10.1038/s41467-021-22044-z
  95. Sun, M., D.E. Soltis, P.S. Solits, X. Zhu, J.G. Burleigh and Z. Chen. 2015. Deep phylogenetic incongruence in the angiosperm clade Rosidae. Molecular Phylogenetics and Evolution 83:156-166. https://doi.org/10.1016/j.ympev.2014.11.003
  96. Tang, Q., K. Pang, X. Yuan and S. Xiao. 2020. A one-billion-year-old multicellular chlorophyte. Nature Ecology & Evolution 4(4):543-549. https://doi.org/10.1038/s41559-020-1122-9
  97. Tettelin, H., V. Masignani, M.J. Cieslewicz, C. Donati, D. Medini, N.L. Ward, S.V. Angiuoli, J. Crabtree, A.L. Jones, A.S. Durkin, R.T. DeBoy, T.M. Davidsen, M. Mora, M. Scarselli, I.M. Ros, J.D. Peterson, C.R. Hauser, J.P. Sundaram, W.C. Nelson, R. Madupu, L.M. Brinkac, R.J. Dodson, M.J. Rosovitz, S.A. Sullivan, S.C. Daugherty, D.H. Haft, J. Selengut, M.L. Gwinn, L. Zhou, N. Zafar, H. Khouri, D. Radune, G. Dimitrov, K. Watkins, K.J.B. O'Connor, S. Smith, J.L. Telford, M.R. Wessels, R. Rappuoli and C.M. Fraser. 2005. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome". Proceedings of the National Academy of Sciences of the USA 102(39):13950-13955. https://doi.org/10.1073/pnas.0506758102
  98. Theriot, E.C., M. Ashworth, E. Ruck, T. Nakov and R.K. Jansen. 2010. A preliminary multigene phylogeny of the diatoms (Bacillariophyta): challenges for future research. Plant Ecology and Evolution 143(3):278-296. https://doi.org/10.5091/plecevo.2010.418
  99. Timmis, J.N., M.A. Ayliffe, C.Y. Huang and W. Martin. 2004. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nature Reviews Genetics 5(2):123-135. https://doi.org/10.1038/nrg1271
  100. Toews, D.P.L. and A. Brelsford. 2012. The biogeography of mitochondrial and nuclear discordance in animals. Molecular Ecology 21(16):3907-3930. https://doi.org/10.1111/j.1365-294X.2012.05664.x
  101. Umen, J. and S. Coelho. 2019. Algal sex determination and the evolution of anisogamy. Annual Review of Microbiology 73:267-291. https://doi.org/10.1146/annurev-micro-020518-120011
  102. Van Etten, J. and D. Bhattacharya. 2020. Horizontal gene transfer in eukaryotes: not if, but how much? Trends in Genetics 36(12):915-925. https://doi.org/10.1016/j.tig.2020.08.006
  103. Wendel, J.F. and J.J. Doyle. 1998. Phylogenetic incongruence: window into genome history and molecular evolution. In: D.E. Soltis, P.S. Soltis and J.J. Doyle (eds.), Molecular Systematics of Plants II, Springer, Boston, MA. pp. 265-296.
  104. Willis, A. and J.N. Woodhouse. 2020. Defining cyanobacterial species: diversity and description through genomics. Critical Reviews in Plant Science 39(2):101-124. https://doi.org/10.1080/07352689.2020.1763541
  105. Xi, Z., L. Liu, J.S. Rest and C.C. Davis. 2014. Coalescent versus concatenation methods and the placement of Amborella as sister to water lilies. Systematic Biology 63(6):919-932. https://doi.org/10.1093/sysbio/syu055
  106. Yabuki, A., R. Kamikawa, S.A. Ishikawa, M. Kolisko, E. Kim, A.S. Tanabe, K. Kume, K.I. Ishida and Y. Inagki. 2014. Palpitomonas bilix represents a basal cryptist lineage: insight into the character evolution in Cryptista. Scientific Reports 4:4641. https://doi.org/10.1038/srep04641
  107. Yang, E.C., K.M. Kim, S.Y. Kim, J.M. Lee, G.H. Boo, J.H. Lee, W.A. Nelson, G. Yi, W.E. Schmidt, S. Fredericq, S.M. Boo, D. Bhattacharya and H.S. Yoon. 2015. Highly conserved mitochondrial genomes among multicellular red algae of the Florideophyceae. Genome Biology and Evolution 7(8):2394-2406. https://doi.org/10.1093/gbe/evv147
  108. Yoon, H.S., J.D. Hackett and D. Bhattacharya. 2002. A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proceedings of the National Academy of Sciences of the USA 99(18):11724-11729. https://doi.org/10.1073/pnas.172234799
  109. Yoon, H.S., J.D. Hackett, C. Ciniglia, G. Pinto and D. Bhattacharya. 2004. A molecular timeline for the origin of photosynthetic eukaryotes. Molecular Biology and Evolution 21(5):809-818. https://doi.org/10.1093/molbev/msh075
  110. Yoon, H.S., K.M. Muller, R.G. Sheath, F.D. Ott and D. Bhattacharya. 2006. Defining the major lineages of red algae (Rhodophyta). Journal of Phycology 42(2):482-492. https://doi.org/10.1111/j.1529-8817.2006.00210.x
  111. Yoon, H.S., G.C. Zuccarello and D. Bhattacharya. 2010. Evolutionary history and taxonomy of red algae. In: J. Seckbach and D.J. Chapman (eds.), Red algae in the genomic age, Springer, Dordrecht. pp. 27-42.
  112. Yoon, H.S., D.C. Price, R. Stepanauskas, V.D. Rajah, M.E. Sieracki, W.H. Wilson, E.C. Yang, S. Duffy and D. Bhattacharya. 2011. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332(6030):714-717. https://doi.org/10.1126/science.1203163
  113. Zhang, Z., C. Qu, K. Zhang, Y. He, X. Zhao, L. Yang, Z. Zheng, X. Ma, X. Wang, W. Wang, K. Wang, D. Li, L. Zhang, X. Zhang, D. Su, X. Chang, M. Zhou, D. Gao, W. Jiang, F. Leliaert, D. Bhattacharya, O. De Clerck, B. Zhong and J. Miao. 2020. Adaptation to extreme Antarctic environments revealed by the genome of a sea ice green alga. Current Biology 30(17):3330-3341. https://doi.org/10.1016/j.cub.2020.06.029
  114. Zuccarello, G.C. and J.A. West. 2003. Multiple cryptic species: molecular diversity and reproductive isolation in the Bostrychia radicans/B. moritziana complex (Rhodomelaceae, Rhodophyta) with focus on North American isolates. Journal of Phycology 39(5):948-959. https://doi.org/10.1046/j.1529-8817.2003.02171.x