Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.12.2020.0223

Complete Genomic Characterization of Two Beet Soil-Borne Virus Isolates from Turkey: Implications of Comparative Analysis of Genome Sequences  

Moradi, Zohreh (Department of Plant Pathology, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University)
Maghdoori, Hossein (Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University of Mashhad)
Nazifi, Ehsan (Department of Biology, Faculty of Basic Sciences, University of Mazandaran)
Mehrvar, Mohsen (Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University of Mashhad)
Publication Information
The Plant Pathology Journal / v.37, no.2, 2021 , pp. 152-161 More about this Journal
Abstract
Sugar beet (Beta vulgaris L.) is known as a key product for agriculture in several countries across the world. Beet soil-borne virus (BSBV) triggers substantial economic damages to sugar beet by reducing the quantity of the yield and quality of the beet sugars. We conducted the present study to report the complete genome sequences of two BSBV isolates in Turkey for the first time. The genome organization was identical to those previously established BSBV isolates. The tripartite genome of BSBV-TR1 and -TR3 comprised a 5,835-nucleotide (nt) RNA1, a 3,454-nt RNA2, and a 3,005-nt RNA3 segment. According to sequence identity analyses, Turkish isolates were most closely related to the BSBV isolate reported from Iran (97.83-98.77% nt identity). The BSBV isolates worldwide (n = 9) were phylogenetically classified into five (RNA-coat protein read through gene [CPRT], TGB1, and TGB2 segments), four (RNA-rep), or three (TGB3) lineages. In genetic analysis, the TGB3 revealed more genetic variability (Pi = 0.034) compared with other regions. Population selection analysis revealed that most of the codons were generally under negative selection or neutral evolution in the BSBV isolates studied. However, positive selection was detected at codon 135 in the TGB1, which could be an adaptation in order to facilitate the movement and overcome the host plant resistance genes. We expect that the information on genome properties and genetic variability of BSBV, particularly in TGB3, TGB1, and CPRT genes, assist in developing effective control measures in order to prevent severe losses and make amendments in management strategies.
Keywords
beet soil-borne virus; complete genome; phylogenetic analysis; selection pressure; soil-borne virus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lindsten, K. 1989. Investigations concerning soil-borne viruses in sugarbeet in Sweden. OEPP/EPPO Bull. 19:531-537.   DOI
2 Lopez, C., Aramburu, J., Galipienso, L., Soler, S., Nuez, F. and Rubio, L. 2011. Evolutionary analysis of tomato Sw-5 resistance-breaking isolates of tomato spotted wilt virus. J. Gen. Virol. 92:210-215.   DOI
3 Martin, D. P., Murrell, B., Golden, M., Khoosal, A. and Muhire, B. 2015. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 1:vev003.
4 McGrann, G. R. D., Grimmer, M. K., Mutasa-Gottgens, E. S. and Stevens, M. 2009. Progress towards the understanding and control of sugar beet rhizomania disease. Mol. Plant Pathol. 10:129-141.   DOI
5 Mehrvar, M. 2009. Diversity of soil-borne sugar beet viruses in Iran: a comprehensive study of beet necrotic yellow vein virus, beet black scorch virus and other pomoviruses in Iran. Ph.D. thesis. Universite catholique de Louvain, Louvain, Belgium.
6 Meunier, A., Schmit, J.-F., Stas, A., Kutluk, N. and Bragard, C. 2003. Multiplex reverse transcription-PCR for simultaneous detection of beet necrotic yellow vein virus, beet soilborne virus, and beet virus Q and their vector Polymyxa betae KESKIN on sugar beet. Appl. Environ. Microbiol. 69:2356-2360.   DOI
7 Meunier, A., Schmit, J. F., Stas, A., Marlier, A., Wauters, A., Steyer, S. and Bragard, C. 2000. The status of rhizomania in Belgium. Parasitica 56:85-97.
8 Moradi, Z., Mehrvar, M., Nazifi, E. and Zakiaghl, M. 2016. The complete genome sequences of two naturally occurring recombinant isolates of sugarcane mosaic virus from Iran. Virus Genes 52:270-280.   DOI
9 Mouhanna, A. M., Nasrallah, A., Langen, G. and Schlosser, E. 2002. Surveys for beet necrotic yellow vein virus (the cause of Rhizomania), other viruses, and soil-borne fungi infecting sugar beet in Syria. J. Phytopathol. 150:657-662.   DOI
10 Prillwitz, H. and Schlosser, E. 1992. Beet soil-borne virus: occurrence, symptoms and effect on plant development. Meded. Fac. Landbouwwet. Rijksuniv. Gent 57:295-302.
11 Ratti, C., Clover, G. R. G., Autonell, C. R., Harju, V. A. and Henry, C. M. 2005. A multiplex RT-PCR assay capable of distinguishing beet necrotic yellow vein virus types A and B. J. Virol. Methods 124:41-47.   DOI
12 Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E. and Sánchez-Gracia, A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34:3299-3302.   DOI
13 Rush, C. M., Liu, H.-Y., Lewellen, R. T. and Acosta-Leal, R. 2006. The continuing saga of rhizomania of sugar beets in the United States. Plant Dis. 90:4-15.   DOI
14 Simon, A. E. and Miller, W. A. 2013. 3' cap-independent translation enhancers of plant viruses. Annu. Rev. Microbiol. 67:21-42.   DOI
15 Skuzeski, J. M., Nichols, L. M., Gesteland, R. F. and Atkins, J. F. 1991. The signal for a leaky UAG stop codon in several plant viruses includes the two downstream codons. J. Mol. Biol. 218:365-373.   DOI
16 Torrance, L., Wright, K. M., Crutzen, F., Cowan, G. H., Lukhovitskaya, N. I., Bragard, C. and Savenkov, E. I. 2011. Unusual features of pomoviral RNA movement. Front Microbiol. 2:259.   DOI
17 Sperschneider, J. and Datta, A. 2010. DotKnot: pseudoknot prediction using the probability dot plot under a refined energy model. Nucleic Acids Res. 38:e103.   DOI
18 Tamada, T. and Kondo, H. 2013. Biological and genetic diversity of plasmodiophorid-transmitted viruses and their vectors. J. Gen. Plant Pathol. 79:307-320.   DOI
19 Torrance, L. 2008. Pomovirus. In: Encyclopedia of virology, 3rd ed., eds. by B. W. J. Mahy and M. H. V. Van Regenmortel, pp. 282-287. Academic Press, London, UK.
20 Adams, M. J., Antoniw, J. F. and Kreuze, J. 2009. Virgaviridae: a new family of rod-shaped plant viruses. Arch. Virol. 154:1967-1972.   DOI
21 Borodynko, N., Hasiow, B. and Pospieszny, H. 2006. First report of beet soilborne virus in Poland. Plant Dis. 90:112.   DOI
22 Borodynko, N., Hasiow-Jaroszewska, B., Rymelska, N. and Pospieszny, H. 2009. Full length genome sequence of Polish isolate of beet soil-borne virus confirms low level of genetic diversity. Acta Biochim. Pol. 56:729-731.
23 Dreher, T. W. 2009. Role of tRNA-like structures in controlling plant virus replication. Virus Res. 139:217-229.   DOI
24 Wang, B., Li, M., Han, C., Li, D. and Yu, J. 2008. Complete genome sequences of two Chinese beet soil-borne virus isolates provide evidence that the genome is highly conserved. J. Phytopathol. 156:487-488.   DOI
25 Weiland, J. J., Van Winkle, D., Edwards, M. C., Larson, R. L., Shelver, W. L., Freeman, T. P. and Liu, H.-Y. 2007. Characterization of a U.S. isolate of beet black scorch virus. Phytopathology 97:1245-1254.   DOI
26 Verhoyen, M., Van Den Bossche, M. and Van Steyvoort, L. 1987. New sugarbeet virus identification in Belgium. Rev. Agric. 40:1463-1468 (in French).
27 Camelo-Garcia, V. M., Rezende, J. A. M. and Nagata, T. 2019. First report of beet soil-borne virus on red table beet in Brazil. Plant Dis. 103:2146.   DOI
28 Crutzen, F., Mehrvar, M., Gilmer, D. and Bragard, C. 2009. A full-length infectious clone of beet soil-borne virus indicates the dispensability of the RNA-2 for virus survival in planta and symptom expression on Chenopodium quinoa leaves. J. Gen. Virol. 90:3051-3056.   DOI
29 Food and Agriculture Organization of the United Nations. 2018. FAOSTAT. URL http://www.fao.org/faostat/en/#home [19 February 2021].
30 Farzadfar, S., Pourrahim, R., Golnaraghi, A. R. and Ahoonmanesh, A. 2007. Surveys of beet necrotic yellow vein virus, beet soil borne virus, beet virus Q and Polymyxa betae in sugar beet fields in Iran. J. Plant Pathol. 89:277-281.
31 Hellendoorn, K., Verlaan, P. W. G. and Pleij, C. W. A. 1997. A functional role for the conserved protonatable hairpins in the 5' untranslated region of turnip yellow mosaic virus RNA. J. Virol. 71:8774-8779.   DOI
32 Henry, C. M., Jones, R. A. C. and Coutts, R. H. A. 1986. Occurrence of a soil-borne virus of sugar beet in England. Plant Pathol. 35:585-591.   DOI
33 Koenig, R. and Loss, S. 1997. Beet soil-borne virus RNA 1: genetic analysis enabled by a starting sequence generated with primers to highly conserved helicase-encoding domains. J. Gen. Virol. 78:3161-3165.   DOI
34 Keskin, B. 1964. Polymyxa betae n.sp., a parasite in the roots of Beta Vulgaris Tournefort, particularly during the early growth of the sugar beet. Arch. Mikrobiol. 49:348-374 (in German).   DOI
35 Koenig, R., Beier, C., Commandeur, U., Luth, U., Kaufmann, A. and Luddecke, P. 1996. Beet soil-borne virus RNA 3: a further example of the heterogeneity of the gene content of furovirus genomes and of triple gene block-carrying RNAs. Virology 216:202-207.   DOI
36 Koenig, R., Commandeur, U., Loss, S., Beier, C., Kaufmann, A. and Lesemann, D. E. 1997. Beet soil-borne virus RNA 2: similarities and dissimilarities to the coat protein gene-carrying RNAs of other furoviruses. J. Gen. Virol. 78:469-477.   DOI
37 Koenig, R., Pleij, C. W., Beier, C. and Commandeur, U. 1998. Genome properties of beet virus Q, a new furo-like virus from sugarbeet, determined from unpurified virus. J. Gen. Virol. 79:2027-2036.   DOI
38 Kosakovsky Pond, S. L. and Frost, S. D. 2005. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 22:1208-1222.   DOI
39 Koenig, R., Pleij, C. W. and Buttner, G. 2000. Structure and variability of the 3' end of RNA 3 of beet soil-borne pomovirus: a virus with uncertain pathogenic effects. Arch. Virol. 145:1173-1181.   DOI
40 Koonin, E. V. and Dolja, V. V. 1993. Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit. Rev. Biochem. Mol. Biol. 28:375-430.   DOI
41 Kutluk Yilmaz, N. D. and Sokmen, M. A. 2010. Occurrence of soilborne sugar beet viruses transmitted by Polymyxa betae northern and central Turkey. J. Plant Pathol. 92:507-510.
42 Kutluk Yilmaz, N. D., Sokmen, M. A., Kaya, R., Sevik, M. A., Tunali, B. and Demirtas, S. 2016. The widespread occurrences of beet soil borne virus and RNA-5 containing beet necrotic yellow vein virus isolates in sugar beet production areas in Turkey. Eur. J. Plant Pathol. 144:443-455.   DOI
43 Kutluk Yilmaz, N. D., Yanar, Y., Gunal, H. and Erkan, S. 2004. Effects of soil properties on disease occurrence of beet necrotic yellow vein virus and beet soilborne virus on sugar beet in Tokat, Turkey. Plant Pathol. J. 3:56-60.   DOI
44 Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35:1547-1549.   DOI
45 Leathers, V., Tanguay, R., Kobayashi, M. and Gallie, D. R. 1993. A phylogenetically conserved sequence within viral 3' untranslated RNA pseudoknots regulates translation. Mol. Cell. Biol. 13:5331-5347.   DOI
46 Lesemann, D.-E., Koenig, R., Lindsten, K. and Henry, C. 1989. Serotypes of beet soil-borne furovirus from FRG and Sweden. OEPP/EPPO Bull. 19:539-540.   DOI