• 제목/요약/키워드: genome engineering

검색결과 617건 처리시간 0.026초

Genome Organization of Temperate Phage 11143 from Emetic Bacillus cereus NCTC11143

  • Lee, Young-Duck;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권5호
    • /
    • pp.649-653
    • /
    • 2012
  • A temperate phage was isolated from emetic Bacillus cereus NCTC 11143 by mitomycin C and characterized by transmission electron microscopy and DNA and protein analyses. Whole genome sequencing of Bacillus phage 11143 was performed by GS-FLX. The phage has a dsDNA genome of 39,077 bp and a 35% G+C content. Bioinformatic analysis of the phage genome revealed 49 putative ORFs involved in replication, morphogenesis, DNA packaging, lysogeny, and host lysis. Bacillus phage 11143 could be classified as a member of the Siphoviridae family by morphology and genome structure. Genomic comparisons at the DNA and protein levels revealed homologous genetic modules with patterns and morphogenesis proteins similar to those of other Bacillus phages. Thus, Bacillus phages might have a mosaic genetic relationship.

DNA Chip Technologies

  • Hwang, Seoung-Yong;Lim, Geun-Bae
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권3호
    • /
    • pp.159-163
    • /
    • 2000
  • The genome sequencing project has generated and will contitute to generate enormous amounts of sequence data. Since the first complete genome sequence of bacterium Haemophilus in fluenzae was published in 1995, the complete genome sequences of 2 eukaryotic and about 22 prokaryotic organisms have detemined. Given this everincreasing amounts of sequence information, new strategies are necessary to efficiently pursue the phase of the geome project- the elucidation of gene expression patterns and gene product function on a whole genome scale. In order to assign functional information to the genome sequence, DNA chip technology was developed to efficienfly identify the differential expression pattern of indepondent biogical samples. DNA chip provides a new tool for genome expreesion analysis that may revolutionize revolutionize many aspects of human kife including mew surg discovery and human disease diagnostics.

  • PDF

Draft Genome Assembly and Annotation for Cutaneotrichosporon dermatis NICC30027, an Oleaginous Yeast Capable of Simultaneous Glucose and Xylose Assimilation

  • Wang, Laiyou;Guo, Shuxian;Zeng, Bo;Wang, Shanshan;Chen, Yan;Cheng, Shuang;Liu, Bingbing;Wang, Chunyan;Wang, Yu;Meng, Qingshan
    • Mycobiology
    • /
    • 제50권1호
    • /
    • pp.66-78
    • /
    • 2022
  • The identification of oleaginous yeast species capable of simultaneously utilizing xylose and glucose as substrates to generate value-added biological products is an area of key economic interest. We have previously demonstrated that the Cutaneotrichosporon dermatis NICC30027 yeast strain is capable of simultaneously assimilating both xylose and glucose, resulting in considerable lipid accumulation. However, as no high-quality genome sequencing data or associated annotations for this strain are available at present, it remains challenging to study the metabolic mechanisms underlying this phenotype. Herein, we report a 39,305,439 bp draft genome assembly for C. dermatis NICC30027 comprised of 37 scaffolds, with 60.15% GC content. Within this genome, we identified 524 tRNAs, 142 sRNAs, 53 miRNAs, 28 snRNAs, and eight rRNA clusters. Moreover, repeat sequences totaling 1,032,129 bp in length were identified (2.63% of the genome), as were 14,238 unigenes that were 1,789.35 bp in length on average (64.82% of the genome). The NCBI non-redundant protein sequences (NR) database was employed to successfully annotate 11,795 of these unigenes, while 3,621 and 11,902 were annotated with the Swiss-Prot and TrEMBL databases, respectively. Unigenes were additionally subjected to pathway enrichment analyses using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Cluster of Orthologous Groups of proteins (COG), Clusters of orthologous groups for eukaryotic complete genomes (KOG), and Non-supervised Orthologous Groups (eggNOG) databases. Together, these results provide a foundation for future studies aimed at clarifying the mechanistic basis for the ability of C. dermatis NICC30027 to simultaneously utilize glucose and xylose to synthesize lipids.

농흉 환자의 흉막액에서 분리된 Bifidobacterium dentium strain ATCC 15424의 유전체 염기서열 해독 (Genome sequence of Bifidobacterium dentium strain ATCC 15424 originally isolated from pleural fluid of an empyema patient)

  • 문지회;김수진;양석빈;장은영;신승윤;이진용;이재형
    • 미생물학회지
    • /
    • 제55권3호
    • /
    • pp.280-282
    • /
    • 2019
  • 본 논문에서는 농흉 환자의 흉막액에서분리된 Bifidobacterium dentium ATCC 15424균주의 유전체 염기서열을 분석하여 보고한다. 이 균주의 유전체는 구강에서 분리된 다른 B. dentium 균주에 존재하지 않는 type III 및 IV secretion system proteins, N-acetylmuramoyl-L-alanine amidase 그리고 PRTRC system protein E를 암호화하는 유전자 등 247개의 ATCC 15424균주 특이적인 유전자들을 포함한다. 이 유전체의 서열 정보는 B. dentium의 자연적 변이와 세균 종 내의 유전체 다양성을 이해하는 데 유용할 것이다.

Prediction of an Essential Gene with Potential Drug Target Property in Streptococcus suis Using Comparative Genomics

  • Zaman, Aubhishek
    • Interdisciplinary Bio Central
    • /
    • 제4권4호
    • /
    • pp.11.1-11.8
    • /
    • 2012
  • Genes that are indispensable for survival are referred to as essential gene. Due to the momentous significance of these genes for cellular activity they can be selected potentially as drug targets. Here in this study, an essential gene for Streptococcus suis was predicted using coherent statistical analysis and powerful genome comparison computational method. At first the whole genome protein scatter plot was generated and subsequently, on the basis of statistical significance, a reference genome was chosen. The parameters set forth for selecting the reference genome was that the genome of the query (Streptococcus suis) and subject must fall in the same genus and yet they must vary to a good degree. Streptococcus pneumoniae was found to be suitable as the reference genome. A whole genome comparison was performed for the reference (Streptococcus pneumoniae) and the query genome (Streptococcus suis) and 14 conserved proteins from them were subjected to a screen for potential essential gene property. Among those 14 only one essential gene was found to be with impressive similarity score between reference and query. The essential gene encodes for a type of 'Clp protease'. Clp proteases play major roles in degrading misfolded proteins. Results found here should help formulating a drug against Strptococcus suis which is responsible for mild to severe clinical conditions in human. However, like many other computational studies, the study has to be validated furthermore through in vitro assays for concrete proof.

Targeted genome engineering via zinc finger nucleases

  • Kim, Seok-Joong;Kim, Jin-Soo
    • Plant Biotechnology Reports
    • /
    • 제5권1호
    • /
    • pp.9-17
    • /
    • 2011
  • With the development of next-generation sequencing technology, ever-expanding databases of genetic information from various organisms are available to researchers. However, our ability to study the biological meaning of genetic information and to apply our genetic knowledge to produce genetically modified crops and animals is limited, largely due to the lack of molecular tools to manipulate genomes. Recently, targeted cleavage of the genome using engineered DNA scissors called zinc finger nucleases (ZFNs) has successfully supported the precise manipulation of genetic information in various cells, animals, and plants. In this review, we will discuss the development and applications of ZFN technology for genome engineering and highlight recent reports on its use in plants.