DOI QR코드

DOI QR Code

Genome Organization of Temperate Phage 11143 from Emetic Bacillus cereus NCTC11143

  • Lee, Young-Duck (Department of Food and Biotechnology, College of Engineering, Gachon University) ;
  • Park, Jong-Hyun (Department of Food and Biotechnology, College of Engineering, Gachon University)
  • Received : 2011.10.20
  • Accepted : 2012.01.16
  • Published : 2012.05.28

Abstract

A temperate phage was isolated from emetic Bacillus cereus NCTC 11143 by mitomycin C and characterized by transmission electron microscopy and DNA and protein analyses. Whole genome sequencing of Bacillus phage 11143 was performed by GS-FLX. The phage has a dsDNA genome of 39,077 bp and a 35% G+C content. Bioinformatic analysis of the phage genome revealed 49 putative ORFs involved in replication, morphogenesis, DNA packaging, lysogeny, and host lysis. Bacillus phage 11143 could be classified as a member of the Siphoviridae family by morphology and genome structure. Genomic comparisons at the DNA and protein levels revealed homologous genetic modules with patterns and morphogenesis proteins similar to those of other Bacillus phages. Thus, Bacillus phages might have a mosaic genetic relationship.

Keywords

References

  1. Ackermann, H. W. 2005. Bacteriophage classification. In E. Kutter and A. Sulakvelidze (eds.) Bacteriophages: Biology and Applications. CRC Press, Boca Raton, FL, USA.
  2. Ackermann, H. W. 2007. 5500 Phages examined in the electron microscope. Arch. Virol. 152: 227-243. https://doi.org/10.1007/s00705-006-0849-1
  3. Ankolekar, C., T. Rahmati, and R. G. Labbe. 2009. Detection of toxigenic Bacillus cereus and Bacillus thuringiensis spores in U.S. rice. Int. J. Food Microbiol. 128: 460-466. https://doi.org/10.1016/j.ijfoodmicro.2008.10.006
  4. Beattie, S. H. and A. G. Williams. 1999. Detection of toxigenic strains of Bacillus cereus and other Bacillus spp. with an improved cytotoxicity assay. Lett. Appl. Microbiol. 28: 221-225. https://doi.org/10.1046/j.1365-2672.1999.00498.x
  5. Borysowski, J., B. Weber-Dabrowska, and A. Gorski. 2006. Bacteriophage endolysins as a novel class of antibacterial agents. Exp. Biol. Med. 231: 366-377.
  6. Brabban, A. D., E. Hite, and T. R. Callaway. 2005. Evolution of foodborne pathogens via temperate bacteriophage-mediated gene transfer. Foodborne Pathog. Dis. 2: 287-303. https://doi.org/10.1089/fpd.2005.2.287
  7. Casjens, S. R. 2003. Prophages and bacterial genomics: What have we learned so far? Mol. Microbiol. 49: 277-300. https://doi.org/10.1046/j.1365-2958.2003.03580.x
  8. Casjens, S. R., D. A. Winn-Stapley, E. B. Gilcrease, R. Morona, C. Kuhlewein, J. E. Chua, et al. 2004. The chromosome of Shigella flexneri bacteriophage Sf6: Complete nucleotide sequence, genetic mosaicism, and DNA packaging. J. Mol. Biol. 339: 379-394. https://doi.org/10.1016/j.jmb.2004.03.068
  9. Casjens, S. R. 2008. Diversity among the tailed-bacteriophages that infect the Enterobacteriaceae. Res. Microbiol. 159: 340-348. https://doi.org/10.1016/j.resmic.2008.04.005
  10. Casjens, S. R. and P. A. Thuman-Commike. 2011. Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. Virology 411: 393-415. https://doi.org/10.1016/j.virol.2010.12.046
  11. Cronin, U. P. and M. G. Wilkinson. 2009. The growth, physiology and potential of Bacillus cereus in cooked rice during storage temperature abuse. Food Control 20: 822-282 https://doi.org/10.1016/j.foodcont.2008.10.018
  12. Davidson, B. E., I. B. Powell, and A. J. Hillier. 1990. Temperate bacteriophages and lysogeny in lactic acid bacteria. FEMS Microbiol. Rev. 87: 79-90. https://doi.org/10.1111/j.1574-6968.1990.tb04880.x
  13. Dinnes, J., J. Deeks, H. Kunst, A. Gibson, E. Cummins, N. Waugh, et al. 2007. A systematic review of rapid diagnostic tests for the detection of tuberculosis infection. Health Technol. Assess. 11: 1-196.
  14. Greer, G. G. 2005. Bacteriophage control of foodborne bacteria. J. Food Prot. 68: 1102-1111.
  15. Hendrix, R. W. 2003. Bacteriophage genomics. Curr. Opin. Microbiol. 6: 506-511. https://doi.org/10.1016/j.mib.2003.09.004
  16. Hudson, J. A., C. Billington, G. Carey-Smith, and G. Greening. 2005. Bacteriophages as biocontrol agents in food. J. Food Prot. 68: 426-437.
  17. Juhala, R. J., M. E. Ford, R. L. Duda, A. Youlton, G. F. Hatfull, and R. W. Hendrix. 2000. Genomic sequences of bacteriophages HK97 and HK022: Pervasive genetic mosaicism in the lambdoid bacteriophages. J. Mol. Biol. 299: 27-51. https://doi.org/10.1006/jmbi.2000.3729
  18. Kim, S. H., J. S. Kim, J. P. Choi, and J. H. Park. 2006. Prevalence and frequency of food-borne pathogens on unprocessed agricultural and marine products. Korean J. Food Sci. Technol. 38: 594-598.
  19. Lu, T. K. and J. J. Collins. 2007. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl. Acad. Sci. USA 104: 11197-11202. https://doi.org/10.1073/pnas.0704624104
  20. Manfioletti, G. and C. Schneider. 1988. A new and fast method for preparing high quality lambda DNA suitable for sequencing. Nucleic Acids Res. 16: 2873-2884. https://doi.org/10.1093/nar/16.7.2873
  21. McAuliffe, O. 2007. The new phage biology: From genomics to applications. In S. McGrath and D. van Sinderen (eds.). Bacteriophage: Genetics and Molecular Biology. Caister Academic Press, Norfolk, UK.
  22. Ravin, V., N. Ravin, S. R. Casjens, M. E. Ford, G. F. Hatfull, and R. W. Hendrix. 2000. Genomic sequence and analysis of the atypical temperate bacteriophage N15. J. Mol. Biol. 299: 53-73. https://doi.org/10.1006/jmbi.2000.3731
  23. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, USA.
  24. Smeesters, P. R., P. A. Dreze, S. Bousbata, K. J. Parikka, S. Timmery, X. Hu, et al. 2011. Characterization of a novel temperate phage originating from a cereulide-producing Bacillus cereus strain. Res. Microbiol.162: 446-459. https://doi.org/10.1016/j.resmic.2011.02.009
  25. Stenfors Arnesen, L. P., A. Fagerlund, and P. E. Granum. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32: 579-606. https://doi.org/10.1111/j.1574-6976.2008.00112.x
  26. Sulakvelidze, A., Z. Alavidze, and J. G. Morris. 2001. Bacteriophage therapy. Antimicrob. Agents Chemother. 45: 649-659. https://doi.org/10.1128/AAC.45.3.649-659.2001
  27. Waldor, M. K. and D. I. Friedman. 2005. Phage regulatory circuits and virulence gene expression. Curr. Opin. Microbiol. 8: 459-465. https://doi.org/10.1016/j.mib.2005.06.001
  28. Withey, S., E. Cartmell, L. M. Avery, and T. Stephenson. 2005. Bacteriophages - potential for application in wastewater treatment processes. Sci. Total Environ. 339: 1-18. https://doi.org/10.1016/j.scitotenv.2004.09.021
  29. Zafar, N., R. Mazumder, and D. Seto. 2002. CoreGenes: A computational tool for identifying and cataloging "core" genes in a set of small genomes. BMC Bioinformatics 3: 12. https://doi.org/10.1186/1471-2105-3-12

Cited by

  1. Characterization and comparative genomic analysis of bacteriophages infecting members of the Bacillus cereus group vol.159, pp.5, 2012, https://doi.org/10.1007/s00705-013-1920-3
  2. Phages Preying on Bacillus anthracis , Bacillus cereus , and Bacillus thuringiensis : Past, Present and Future vol.6, pp.7, 2012, https://doi.org/10.3390/v6072623