Browse > Article
http://dx.doi.org/10.4014/jmb.1110.10065

Genome Organization of Temperate Phage 11143 from Emetic Bacillus cereus NCTC11143  

Lee, Young-Duck (Department of Food and Biotechnology, College of Engineering, Gachon University)
Park, Jong-Hyun (Department of Food and Biotechnology, College of Engineering, Gachon University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.5, 2012 , pp. 649-653 More about this Journal
Abstract
A temperate phage was isolated from emetic Bacillus cereus NCTC 11143 by mitomycin C and characterized by transmission electron microscopy and DNA and protein analyses. Whole genome sequencing of Bacillus phage 11143 was performed by GS-FLX. The phage has a dsDNA genome of 39,077 bp and a 35% G+C content. Bioinformatic analysis of the phage genome revealed 49 putative ORFs involved in replication, morphogenesis, DNA packaging, lysogeny, and host lysis. Bacillus phage 11143 could be classified as a member of the Siphoviridae family by morphology and genome structure. Genomic comparisons at the DNA and protein levels revealed homologous genetic modules with patterns and morphogenesis proteins similar to those of other Bacillus phages. Thus, Bacillus phages might have a mosaic genetic relationship.
Keywords
B. cereus; temperate phage; DNA sequence; sequence analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ackermann, H. W. 2005. Bacteriophage classification. In E. Kutter and A. Sulakvelidze (eds.) Bacteriophages: Biology and Applications. CRC Press, Boca Raton, FL, USA.
2 Ackermann, H. W. 2007. 5500 Phages examined in the electron microscope. Arch. Virol. 152: 227-243.   DOI   ScienceOn
3 Ankolekar, C., T. Rahmati, and R. G. Labbe. 2009. Detection of toxigenic Bacillus cereus and Bacillus thuringiensis spores in U.S. rice. Int. J. Food Microbiol. 128: 460-466.   DOI   ScienceOn
4 Beattie, S. H. and A. G. Williams. 1999. Detection of toxigenic strains of Bacillus cereus and other Bacillus spp. with an improved cytotoxicity assay. Lett. Appl. Microbiol. 28: 221-225.   DOI   ScienceOn
5 Borysowski, J., B. Weber-Dabrowska, and A. Gorski. 2006. Bacteriophage endolysins as a novel class of antibacterial agents. Exp. Biol. Med. 231: 366-377.
6 Brabban, A. D., E. Hite, and T. R. Callaway. 2005. Evolution of foodborne pathogens via temperate bacteriophage-mediated gene transfer. Foodborne Pathog. Dis. 2: 287-303.   DOI   ScienceOn
7 Casjens, S. R. 2003. Prophages and bacterial genomics: What have we learned so far? Mol. Microbiol. 49: 277-300.   DOI   ScienceOn
8 Casjens, S. R., D. A. Winn-Stapley, E. B. Gilcrease, R. Morona, C. Kuhlewein, J. E. Chua, et al. 2004. The chromosome of Shigella flexneri bacteriophage Sf6: Complete nucleotide sequence, genetic mosaicism, and DNA packaging. J. Mol. Biol. 339: 379-394.   DOI   ScienceOn
9 Lu, T. K. and J. J. Collins. 2007. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl. Acad. Sci. USA 104: 11197-11202.   DOI   ScienceOn
10 Manfioletti, G. and C. Schneider. 1988. A new and fast method for preparing high quality lambda DNA suitable for sequencing. Nucleic Acids Res. 16: 2873-2884.   DOI   ScienceOn
11 McAuliffe, O. 2007. The new phage biology: From genomics to applications. In S. McGrath and D. van Sinderen (eds.). Bacteriophage: Genetics and Molecular Biology. Caister Academic Press, Norfolk, UK.
12 Ravin, V., N. Ravin, S. R. Casjens, M. E. Ford, G. F. Hatfull, and R. W. Hendrix. 2000. Genomic sequence and analysis of the atypical temperate bacteriophage N15. J. Mol. Biol. 299: 53-73.   DOI   ScienceOn
13 Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, USA.
14 Smeesters, P. R., P. A. Dreze, S. Bousbata, K. J. Parikka, S. Timmery, X. Hu, et al. 2011. Characterization of a novel temperate phage originating from a cereulide-producing Bacillus cereus strain. Res. Microbiol.162: 446-459.   DOI   ScienceOn
15 Stenfors Arnesen, L. P., A. Fagerlund, and P. E. Granum. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32: 579-606.   DOI   ScienceOn
16 Sulakvelidze, A., Z. Alavidze, and J. G. Morris. 2001. Bacteriophage therapy. Antimicrob. Agents Chemother. 45: 649-659.   DOI   ScienceOn
17 Waldor, M. K. and D. I. Friedman. 2005. Phage regulatory circuits and virulence gene expression. Curr. Opin. Microbiol. 8: 459-465.   DOI   ScienceOn
18 Withey, S., E. Cartmell, L. M. Avery, and T. Stephenson. 2005. Bacteriophages - potential for application in wastewater treatment processes. Sci. Total Environ. 339: 1-18.   DOI   ScienceOn
19 Casjens, S. R. 2008. Diversity among the tailed-bacteriophages that infect the Enterobacteriaceae. Res. Microbiol. 159: 340-348.   DOI   ScienceOn
20 Zafar, N., R. Mazumder, and D. Seto. 2002. CoreGenes: A computational tool for identifying and cataloging "core" genes in a set of small genomes. BMC Bioinformatics 3: 12.   DOI
21 Casjens, S. R. and P. A. Thuman-Commike. 2011. Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. Virology 411: 393-415.   DOI   ScienceOn
22 Cronin, U. P. and M. G. Wilkinson. 2009. The growth, physiology and potential of Bacillus cereus in cooked rice during storage temperature abuse. Food Control 20: 822-282   DOI   ScienceOn
23 Davidson, B. E., I. B. Powell, and A. J. Hillier. 1990. Temperate bacteriophages and lysogeny in lactic acid bacteria. FEMS Microbiol. Rev. 87: 79-90.   DOI
24 Dinnes, J., J. Deeks, H. Kunst, A. Gibson, E. Cummins, N. Waugh, et al. 2007. A systematic review of rapid diagnostic tests for the detection of tuberculosis infection. Health Technol. Assess. 11: 1-196.
25 Greer, G. G. 2005. Bacteriophage control of foodborne bacteria. J. Food Prot. 68: 1102-1111.
26 Hendrix, R. W. 2003. Bacteriophage genomics. Curr. Opin. Microbiol. 6: 506-511.   DOI   ScienceOn
27 Hudson, J. A., C. Billington, G. Carey-Smith, and G. Greening. 2005. Bacteriophages as biocontrol agents in food. J. Food Prot. 68: 426-437.
28 Juhala, R. J., M. E. Ford, R. L. Duda, A. Youlton, G. F. Hatfull, and R. W. Hendrix. 2000. Genomic sequences of bacteriophages HK97 and HK022: Pervasive genetic mosaicism in the lambdoid bacteriophages. J. Mol. Biol. 299: 27-51.   DOI   ScienceOn
29 Kim, S. H., J. S. Kim, J. P. Choi, and J. H. Park. 2006. Prevalence and frequency of food-borne pathogens on unprocessed agricultural and marine products. Korean J. Food Sci. Technol. 38: 594-598.