• Title/Summary/Keyword: genetic lineages

Search Result 74, Processing Time 0.021 seconds

An Outbreak of Gregarious Nymphs of Locusta migratoria (Orthoptera: Acrididae) in Korea and Their Genetic Lineage Based on mtDNA COI Sequences (한국에서 군집형 풀무치의 대발생과 그 집단의 유전적 계통)

  • Lee, Gwan Seok;Kim, Kwang Ho;Kim, Chang Seok;Lee, Wonhoon
    • Korean journal of applied entomology
    • /
    • v.55 no.4
    • /
    • pp.523-528
    • /
    • 2016
  • The migratory locust Locusta migratoria, one of the world's most notorious insect pests, has polyphenic (gregarious or solitarious) characteristics. Although this species is known to have several morphological variants, it is genetically divided into two different lineages using mitochondrial genome analysis: Southern (Africa, Southern Europe, Southern Asia, and Australia) and Northern (East Asia and the Eurasian continent). In 2014, a large number of orange black-colored gregarious L. migratoria nymphs suddenly appeared at Haenamgun, Jeollanamdo in the south of Korea. This is the first report of gregarious phase locusts occurring in Korea. In this study, mitochondrial COI sequences of one nymph and 11 adults of L. migratoria were analyzed to examine the genetic lineage of the gregarious nymphs of L. migratoria. Our results showed that all 12 individuals belong to the Northern linage and have low intraspecific genetic divergences (0.0% - 0.9%).

Genetic Relationship Between Korean and Mongolian Populations Based on the Y Chromosome DNA Variation

  • Jin, Han-Jun;Kim, Wook
    • Animal cells and systems
    • /
    • v.7 no.2
    • /
    • pp.139-144
    • /
    • 2003
  • We analyzed seven Y chromosome binary markers (YAP, RPS4Y_711,\;M9,\;M175,\;LINE1,\;SRY_+465$ and 47z) in samples from a total of 254 males from Koreans and tow Mongolian ethnic groups (Buryat and Khalkh) to study the genetic relationship among these populations. We found eight distinct Y haplogroups constructed from the seven binary markers. Haplogroup DE-YAP was present at extremely low frequencies (∼2%) in the Korean and Mongolian populations. This result is consistent with earlier reports that showed the YAP+ chromosomes to be highly polymorphic only in populations from Japan and Tibet in east Asia. The observed high frequency of haplogroup $C-RPS4Y_711$ in the Mongolian populations (∼40%) is concordant with recent findings, showing that the $RPS4Y_711$-T chromosomes were distributed at high frequencies in Siberian and Mongolian populations compared with most other populations from east Asia. Thus, the relatively moderate frequency of haplogroup $C-RPS4Y_711$ in Korean (∼15%) can be seen as genetic evidence for probable interaction with Mongolian and/or Siberian populations. In contrast, the majority (∼75%) of modern Koreans studied here had high frequencies of Y chromosome lineages of haplogroup O-M175 and additional haplogroupts that define sublineage of O-M175, which are most likely related with modern populations in China. In conclusion, our data on the Y chromosome haplogroup distribution may provide evidence for interaction between Korean and Mongolian populations, but Korean tend to be much more related with those from southern-to-northern populations of China than to Mongolians in east Asia.

Complete Genomic Characterization of Two Beet Soil-Borne Virus Isolates from Turkey: Implications of Comparative Analysis of Genome Sequences

  • Moradi, Zohreh;Maghdoori, Hossein;Nazifi, Ehsan;Mehrvar, Mohsen
    • The Plant Pathology Journal
    • /
    • v.37 no.2
    • /
    • pp.152-161
    • /
    • 2021
  • Sugar beet (Beta vulgaris L.) is known as a key product for agriculture in several countries across the world. Beet soil-borne virus (BSBV) triggers substantial economic damages to sugar beet by reducing the quantity of the yield and quality of the beet sugars. We conducted the present study to report the complete genome sequences of two BSBV isolates in Turkey for the first time. The genome organization was identical to those previously established BSBV isolates. The tripartite genome of BSBV-TR1 and -TR3 comprised a 5,835-nucleotide (nt) RNA1, a 3,454-nt RNA2, and a 3,005-nt RNA3 segment. According to sequence identity analyses, Turkish isolates were most closely related to the BSBV isolate reported from Iran (97.83-98.77% nt identity). The BSBV isolates worldwide (n = 9) were phylogenetically classified into five (RNA-coat protein read through gene [CPRT], TGB1, and TGB2 segments), four (RNA-rep), or three (TGB3) lineages. In genetic analysis, the TGB3 revealed more genetic variability (Pi = 0.034) compared with other regions. Population selection analysis revealed that most of the codons were generally under negative selection or neutral evolution in the BSBV isolates studied. However, positive selection was detected at codon 135 in the TGB1, which could be an adaptation in order to facilitate the movement and overcome the host plant resistance genes. We expect that the information on genome properties and genetic variability of BSBV, particularly in TGB3, TGB1, and CPRT genes, assist in developing effective control measures in order to prevent severe losses and make amendments in management strategies.

Mitochondrial Genetic Diversity and Phylogenetic Relationships of Siberian Flying Squirrel(Pteromys volans) Populations

  • Lee, Mu-Yeong;Park, Sun-Kyung;Hong, Yoon-Jee;Kim, Young-Jun;Voloshina, Inna;Myslenkov, Alexander;Saveljev, Alexander P.;Choi, Tae-Young;Piao, Ren-Zhu;An, Jung-Hwa;Lee, Mun-Han;Lee, Hang;Min, Mi-Sook
    • Animal cells and systems
    • /
    • v.12 no.4
    • /
    • pp.269-277
    • /
    • 2008
  • Siberian flying squirrel, an endangered species in South Korea, is distributed through major mountain regions of South Korea. The number of Siberian flying squirrel(Pteromys volans) in South Korea has decreased and their habitats are fragmented and isolated because of anthropogenic activities. So far no molecular genetic data has, however, been available for their conservation and management. To obtain better information concerning genetic diversity and phylogenetic relationships of the Siberian flying squirrel in South Korea, we examined 14 individuals from South Korea, 7 individuals from Russia, and 5 individuals from northeastern China along with previously published 29 haplotypes for 1,140 bp of the mtDNA cytochrome b gene. The 14 new individuals from South Korea had 7 haplotypes which were not observed in the regions of Russia and Hokkaido. The level of genetic diversity(0.616%) in the South Korean population was lower than that in eastern Russia(0.950%). The geographical distribution of mtDNA haplotypes and reduced median network confirmed that there are three major lineages of Siberian flying squirrel, occupying; Far Eastern, northern Eurasia, and the island of Hokkaido. The South Korean population only slightly distinct from the Eurasia, and eastern Russian population, and is part of the lineage Far Eastern. Based on these, we suggest that the South Korean population could be considered to belong to one partial ESU(Far Eastern) of three partial ESUs but a different management unit. However, the conservation priorities should be reconfirmed by nuclear genetic marker and ecological data.

Genetic Similarity-dissimilarity Among Korea Chum Salmons of Each Stream and Their Relationship with Japan salmons (한국 연어의 소상하천간 유전적 유사성과 차이점 및 일본 연어와 유전적 관계)

  • Kim, Go-Eun;Kim, Choong-Gon;Lee, Youn-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.2
    • /
    • pp.94-101
    • /
    • 2007
  • Analysis of population structure of Oncorhynchus keta, the most abundant salmon in the East Sea of Korea, has not been much carried out despite its importance as a fishery resource in the North Pacific. Currently, molecular methods are being applied to stock identification and a method of using single nucleotide polymorphisms (SNPs) is getting more popular. In this study, we analyzed the 720 bp long sequence of the mtDNA COIII-ND3-ND4L region in order to examine genetic similarity-dissimilarity among the Korea chum salmons of each stream and their relationship with the Japan chum salmons. A total of 152 individuals were analyzed, 108 from 3 locations of Korea and 44 from 2 locations of japan, which resulted in as many as 29 different haplotypes. Pairwise $F_{ST}$ and AMOVA tests of the populations show that there is no significant population-level genetic difference among the chum salmons analyzed ($F_{ST}<0.07$). On the other hand, haplotype relationships among the individuals reveal that approximately 25% of the Korea salmons consist genetic lineages independent of Japan salmons and also that a genetic lineage exists in the Puk river and the Namdae river salmons independent of the Wangpi river salmons of Korea.

Genetic Diversity and Phylogenetic Analysis of the Iranian Leishmania Parasites Based on HSP70 Gene PCR-RFLP and Sequence Analysis

  • Nemati, Sara;Fazaeli, Asghar;Hajjaran, Homa;Khamesipour, Ali;Anbaran, Mohsen Falahati;Bozorgomid, Arezoo;Zarei, Fatah
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.4
    • /
    • pp.367-374
    • /
    • 2017
  • Despite the broad distribution of leishmaniasis among Iranians and animals across the country, little is known about the genetic characteristics of the causative agents. Applying both HSP70 PCR-RFLP and sequence analyses, this study aimed to evaluate the genetic diversity and phylogenetic relationships among Leishmania spp. isolated from Iranian endemic foci and available reference strains. A total of 36 Leishmania isolates from almost all districts across the country were genetically analyzed for the HSP70 gene using both PCR-RFLP and sequence analysis. The original HSP70 gene sequences were aligned along with homologous Leishmania sequences retrieved from NCBI, and subjected to the phylogenetic analysis. Basic parameters of genetic diversity were also estimated. The HSP70 PCR-RFLP presented 3 different electrophoretic patterns, with no further intraspecific variation, corresponding to 3 Leishmania species available in the country, L. tropica, L. major, and L. infantum. Phylogenetic analyses presented 5 major clades, corresponding to 5 species complexes. Iranian lineages, including L. major, L. tropica, and L. infantum, were distributed among 3 complexes L. major, L. tropica, and L. donovani. However, within the L. major and L. donovani species complexes, the HSP70 phylogeny was not able to distinguish clearly between the L. major and L. turanica isolates, and between the L. infantum, L. donovani, and L. chagasi isolates, respectively. Our results indicated that both HSP70 PCR-RFLP and sequence analyses are medically applicable tools for identification of Leishmania species in Iranian patients. However, the reduced genetic diversity of the target gene makes it inevitable that its phylogeny only resolves the major groups, namely, the species complexes.

A Potential Demerit of the Pronuclear Microinjection Technique (형질전환 마우스 생산 및 표현형에 pronuclear microinjection 이 미치는 영향 연구)

  • Wang, Ai-Guo;Kim, Sun-Uk;Moon, Hyung-Bae;Hyun, Byung-Hwa;Nam, Ki-Hoan;Suh, Jun-Gyo;Kim, Nam-Soon;Yu, Dae-Yeul;Lee, Dong-Seok
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.566-570
    • /
    • 2006
  • Pronuclear microinjection (PMI) is a primary method for producing transgenic mice and offers a powerful tool for investigating gene function in vivo. The method has several reported advantages and disadvantages. Here, we report another potential shortcoming. The survival rate of fertilized one cell-stage embryos was significantly reduced after PMI procedure (65.4% (1202/1838)). In addition, the proportion of embryos developing to full-term was also significantly lower than that of embryos not undergoing PMI (26.5% (319/1202) vs 41.9% (57/136)). Moreover, 3 out of 21 (14.3%) founder control mice which were non-transgene-carrying littermates of transgenic founders showed histopathological changes in their liver, which was comparable to that in of transgenic lineages (4 out of 27 (14.8%)). In conclusion, the mechanical damages in chromosomes occurring during PMI procedure may be a potential factor influencing phenotypes of transgenic mice.

Molecular Phylogeny and Geography of Korean Medaka Fish (Oryzias latipes)

  • Kang, Tae-Wook;Lee, Eun-Hye;Kim, Moo-Sang;Paik, Sang-Gi;Kim, Sang-Soo;Kim, Chang-Bae
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.151-156
    • /
    • 2005
  • The phylogeny and geography of the medaka (Oryzias latipes) populations of Korea were investigated by analyzing sequence data for the mitochondrial control region. From the 41 haplotypes including 25 Korean haplotypes detected in 64 Korean specimens and data for the Japanese and Chinese populations, phylogenetic and nested clade analyses were executed to examine the phylogeny of haplogroups and the relation of the genetic architecture of the haplotypes to the historical geography of the Korean medaka fish. The analyses suggest that there are two very distinct lineages of Korean medaka, and that these result from reproductive isolation mechanisms due to geographic barriers. The southeastern lineage has experienced recent range expansion to the western region. The northwestern lineage, sister to Chinese populations, showed evidence of internal range expansion with shared haplotypes.

The Roles of Restoration Ecology, Landscape Ecology and Conservation Biology to Restore the Environment (환경복원에서 복원생태학, 경관생태학, 보전생물학의 역할)

  • Kim, Myoung Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.4
    • /
    • pp.17-23
    • /
    • 2003
  • Restoration ecology is undergoing rapid growth as academic field over the last 15 years. The specification of goals for restoration projects is frequently described as the most important component of a project. The endeavor for universal development of goals for ecological restoration continues to generate many discussion and controversy. I discuss the importance of restoration goals and diverse roots of restoration ecology, and show how the complex lineages within restoration ecology. I review the three major theme that currently are used to develop the restoration goals : restoration of species, restoration of whole ecosystem or landscapes, and the restoration of ecosystem services. Restoration ecology, landscape ecology and conservation biology share goals to conserve biodiversity, but differ in focus of approach. I review the differences among three fields. Conservation biology has been more zoological, more descriptive, and theoretical, and more emphasized the population and genetic research. However, restoration ecology has been more plant ecological, more experimental, and emphasized the community and plant succession. Landscape ecology has emphasized the interaction of ecosystem and dispersal among populations. I suggest the integration of restoration ecology, landscape ecology and conservation biology. For example, conservation biology will contribute to the preservation of original habitats by population study, restoration ecology will contribute to regenerate damaged ecosystem and ex situ preservation, and landscape ecology will contribute to restoration of population and landscape.

CysQ of $Cryptosporidium$ $parvum$, a Protozoa, May Have Been Acquired from Bacteria by Horizontal Gene Transfer

  • Lee, Ji-Young;Kim, Sang-Soo
    • Genomics & Informatics
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • Horizontal gene transfer (HGT) is the movement of genetic material between kingdoms and is considered to play a positive role in adaptation. $Cryptosporidium$ $parvum$ is a parasitic protozoan that causes an infectious disease. Its genome sequencing reported 14 bacteria-like proteins in the nuclear genome. Among them, cgd2_1810, which has been annotated as CysQ, a sulfite synthesis pathway protein, is listed as one of the candidates of genes horizontally transferred from bacterial origin. In this report, we examined this issue using phylogenetic analysis. Our BLAST search showed that $C.$ $parvum$ CysQ protein had the highest similarity with that of proteobacteria. Analysis with NCBI's Conserved Domain Tree showed phylogenetic incongruence, in that $C.$ $parvum$ CysQ protein was located within a branch of proteobacteria in the cd01638 domain, a bacterial member of the inositol monophosphatase family. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, the sulfate assimilation pathway, where CysQ plays an important role, is well conserved in most eukaryotes as well as prokaryotes. However, the Apicomplexa, including $C.$ $parvum$, largely lack orthologous genes of the pathway, suggesting its loss in those protozoan lineages. Therefore, we conclude that $C.$ $parvum$ regained cysQ from proteobacteria by HGT, although its functional role is elusive.