• Title/Summary/Keyword: genetic environment

Search Result 1,210, Processing Time 0.033 seconds

The Genetic Development of Sire, Dam and Progenies and Genotype ${\times}$ Environment Interaction in a Beef Breeding System

  • Bhuiyan, A.K.F.H.;Dietl, G.;Klautschek, G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.1
    • /
    • pp.13-17
    • /
    • 2004
  • The aim of this study was to investigate genetic development and genotype${\times}$environment interactions (GEI) in postweaning body weight of fattening bulls at the end of test period (WT-T) under various beef fattening environments. Data on a total of 24,247 fattening bulls obtained from the industrial farm, breeding farms and testing stations were used. Heritability estimates for WT-T in all environments were nearly similar. Significant genetic developments of sire, dam and progenies for WT-T were observed in all environments. However, many differences in annual genetic developments between the environments were significant. The genetic correlations for WT-T between industrial farm and breeding farms, industrial farm and testing stations and breeding farms and testing stations were respectively 0.004, 0.004 and 0.013. These low estimates of genetic correlations and significant differences in genetic developments among environments clearly show the existence of GEI for WT-T among various fattening environments. Results of this study indicate the need for environment-specific genetic evaluation and selection of beef bulls for commercial beef production.

Application of an Optimization Method to Groundwater Contamination Problems

  • Ko, Nak-Youl;Lee, Jin-Yong;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.24-27
    • /
    • 2002
  • The optimal designs of groundwater problems of contaminant containment and cleanup using linear programming and genetic algorithm are provided. In the containment problem, genetic algorithm shows the superior feature to linear programming. In cleanup problem, genetic algorithm makes reasonable optimal design. Un this study, it is demonstrated through numerical experiments that genetic algorithm can be applied to remedial designs of groundwater problems.

  • PDF

Genetic Linkage Plays an Important Role in Maintaining Genetic Variability under Stabilizing Selection in Changing Environment

  • Jeung, Min-Gull;Janes N. Thompson, Jr;Lee, Chung-Choo
    • Animal cells and systems
    • /
    • v.1 no.4
    • /
    • pp.619-627
    • /
    • 1997
  • Maintenance of polymorphism in a two-locus system with two alleles under stabilizing selection has been tested by Monte-Carlo simulation. The effect of each allele was additive. Only gene x environment interactions and degree of genetic linkage between loci were considered. There were no other evolutionary forces acting except stabilizing selection. Fixation rates were influenced by the extent of environmental change and the degree of genetic linkage. In most cases, stabilizing selection depleted genetic variability when two loci have a lower degree of linkage (10 cM). When two loci are closely linked (0.1 cM), however, stabilizing selection promoted balanced heterozygotes in changing environments. Thus, environment-dependent selection and recombination rate are important parameters which should be incorporated into mechanisms of maintenance of genetic variability.

  • PDF

Neural network structure design using genetic algorithm

  • Murata, Junichi;Tanaka, Kei;Koga, Masaru;Hirasawa, Kotaro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.187-190
    • /
    • 1995
  • A method is proposed which searches for optimal structures of Neural Networks (NN) using Genetic Algorithm (GA). The purpose of the method lies in not only finding an optimal NN structure but also leading us to the goal of self-organized control system that acquires its structure and its functionality by itself depending on its environment.

  • PDF

Optimal Design for Indoor Thermal Environment based on CFD Simulation and Genetic Algorithms (CFD 연성해석과 유전자 알고리즘을 이용한 실내 열환경 최적설계에 관한 연구)

  • 김태연;이윤규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.111-120
    • /
    • 2004
  • The optimal design method of indoor thermal environment using CFD coupled simulation and genetic algorithms (GA) is developed in this study. CFD could analyze the thermal environment considering the distribution of temperature, velocity, etc. in a room. Therefore, It would be appropriate to use CFD for the optimal design method considering their distribution. In this paper, the optimal design means the most appropriate boundary conditions of the room among the conditions where the design target of indoor therm environment is achieved. Two step optimal indoor thermal environment design method is proposed. It includes the GA for searching the optimal indoor thermal environment design. To examine the performance of this method, the optimal design of hybrid ventilation system, which uses the natural cross ventilation and the radiation-cooling panel is conducted. The optimal design which satisfies the design target (thermal comfort, minimum cooling load, minimum vertical temperature difference) is found using two step optimal design method.

Flux Optimization Using Genetic Algorithms in Membrane Bioreactor

  • Kim Jung-Mo;Park Chul-Hwan;Kim Seung-Wook;Kim Sang-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.863-869
    • /
    • 2006
  • The behavior of submerged membrane bioreactor (SMBR) filtration systems utilizing rapid air backpulsing as a cleaning technique to remove reversible foulants was investigated using a genetic algorithm (GA). A customized genetic algorithm with suitable genetic operators was used to generate optimal time profiles. From experiments utilizing short and long periods of forward and reverse filtration, various experimental process parameters were determined. The GA indicated that the optimal values for the net flux fell between 263-270 LMH when the forward filtration time ($t_f$) was 30-37 s and the backward filtration time ($t_b$) was 0.19-0.27 s. The experimental data confirmed the optimal backpulse duration and frequency that maximized the net flux, which represented a four-fold improvement in 24-h backpulsing experiments compared with the absence of backpulsing. Consequently, the identification of a region of feasible parameters and nonlinear flux optimization were both successfully performed by the genetic algorithm, meaning the genetic algorithm-based optimization proved to be useful for solving SMBR flux optimization problems.

Genetic Diversity of Orobanche cumana Populations in Serbia

  • Ivanovic, Zarko;Marisavljevic, Dragana;Marinkovic, Radovan;Mitrovic, Petar;Blagojevic, Jovana;Nikolic, Ivan;Pavlovic, Danijela
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.512-520
    • /
    • 2021
  • In this study, we report genetic characterization of Orobanche cumana, the causal agent of sunflower wilting in Serbia. The genetic diversity of this parasitic plant in Serbia was not studied before. Random amplified polymorphic DNA (RAPD) markers and partial rbcL gene sequences analysis were used to characterize the O. cumana populations at the molecular level. While phylogenetic analyses of RAPD-PCR amplicons were performed using unweighted pair-group Method analyses, rbcL gene sequences were analyzed using neigbor joining method and minimum spanning tree. Molecular analyses of RAPD-PCR analysis revealed high genetic diversity of O. cumana populations which indicated high adaptive potential of this parasitic weed in Serbia. Further analyses of rbcL gene using minimum spanning tree revealed clear differences among diverse sections of Orobanche genus. Although this molecular marker lacked the resolution to display intrapopulation diversity it could be a useful tool for understanding the evolution of this parasitic plant. Our results suggested that O. cumana has great genetic potential which can lead to differentiation of more virulent races which is important for determining crop breeding strategies for their control.

Improving the Genetic Algorithm for Maximizing Groundwater Development During Seasonal Drought

  • Chang, Sun Woo;Kim, Jitae;Chung, Il-Moon;Lee, Jeong Eun
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.435-446
    • /
    • 2020
  • The use of groundwater in Korea has increased in recent years to the point where its extraction is restricted in times of drought. This work models the groundwater pumping field as a confined aquifer in a simplified simulation of groundwater flow. It proposes a genetic algorithm to maximize groundwater development using a conceptual model of a steady-state confined aquifer. Solving the groundwater flow equation numerically calculates the hydraulic head along the domain of the problem; the algorithm subsequently offers optimized pumping strategies. The algorithm proposed here is designed to improve a prior initial groundwater management model. The best solution is obtained after 200 iterations. The results compare the computing time for five simulation cases. This study shows that the proposed algorithm can facilitate better groundwater development compared with a basic genetic algorithm.

Complete Sequence Analysis of a Korean Isolate of Chinese Yam Necrotic Mosaic Virus and Generation of the Virus Specific Primers for Molecular Detection

  • Kwon, Sun-Jung;Cho, In-Sook;Choi, Seung-Kook;Yoon, Ju-Yeon;Choi, Gug-Seoun
    • Research in Plant Disease
    • /
    • v.22 no.3
    • /
    • pp.194-197
    • /
    • 2016
  • Chinese yam necrotic mosaic virus (CYNMV) is one of the most widespread viruses in Chinese yam (Dioscorea opposita Thunb.) and causes serious yield losses. Currently, genetic information of CYNMV is very restricted and complete genome sequences of only two isolates (one from Japan and another from China) have been reported. In this study, we determined complete genome sequence of the CYNMV isolate AD collected from Andong, Korea. Genetic analysis of the polyprotein amino acid sequence revealed that the Korean isolate AD has high similarity with the Japanese isolate PES3 (97%) but relatively low similarity with the Chinese isolate FX1 (78%). Phylogenetic analysis using the CYNMV 3' proximal nucleotide sequences harboring the coat protein and 3' untranslated region further supported genetic relationship among the CYNMV isolates. Based on comparative analysis of the CYNMV genome sequences determined in this study and other previous studies, we generated molecular detection primers that are highly specific and efficient for CYNMV diagnosis.

Evaluation of genotype by environment interactions on milk production traits of Holstein cows in southern Brazil

  • Moreira, Raphael Patrick;Pinto, Luis Fernando Batista;Valloto, Altair Antonio;Pedrosa, Victor Breno
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.4
    • /
    • pp.459-466
    • /
    • 2019
  • Objective: This study assessed the possible existence of genotype by environment interactions for milk, fat and protein yields in Holstein cattle raised in one of the most important milk production basins in Brazil. Methods: Changes in the genetic parameters and breeding values were evaluated for 57,967 animals from three distinct regions of southern Brazil, divided according to differences in climate. The genotype by environment interaction was determined by genetic correlations between regions, estimated by the restricted maximum likelihood, considering the animal model. Bull rankings were investigated to verify the ratio of coincident selected animals between regions for each trait. Results: The estimates of heritability coefficients were similar between two regions, but were lower in the third evaluated area, for all traits. Genetic correlations between regions were high, ranging from 0.91 to 0.99 for milk, fat and protein yields, representing the absence of a genotype by environment interaction for productive traits. The percentage of selection error between regions for the top 10% of animals ranged from 0.88% to 2.07% for milk yield, 0.99% to 2.46% for fat yield and 0.59% to 3.15% for protein yield. Conclusion: A slight change in genotype between areas was expected since no significant genotype by environment interactions were identified, facilitating the process of selecting Holstein cattle in southern Brazil.