Browse > Article

Flux Optimization Using Genetic Algorithms in Membrane Bioreactor  

Kim Jung-Mo (Green Engineering Team, Environment and Energy Division)
Park Chul-Hwan (Green Engineering Team, Environment and Energy Division)
Kim Seung-Wook (Department of Chemical and Biological Engineering, Korea University)
Kim Sang-Yong (Green Engineering Team, Environment and Energy Division)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.6, 2006 , pp. 863-869 More about this Journal
Abstract
The behavior of submerged membrane bioreactor (SMBR) filtration systems utilizing rapid air backpulsing as a cleaning technique to remove reversible foulants was investigated using a genetic algorithm (GA). A customized genetic algorithm with suitable genetic operators was used to generate optimal time profiles. From experiments utilizing short and long periods of forward and reverse filtration, various experimental process parameters were determined. The GA indicated that the optimal values for the net flux fell between 263-270 LMH when the forward filtration time ($t_f$) was 30-37 s and the backward filtration time ($t_b$) was 0.19-0.27 s. The experimental data confirmed the optimal backpulse duration and frequency that maximized the net flux, which represented a four-fold improvement in 24-h backpulsing experiments compared with the absence of backpulsing. Consequently, the identification of a region of feasible parameters and nonlinear flux optimization were both successfully performed by the genetic algorithm, meaning the genetic algorithm-based optimization proved to be useful for solving SMBR flux optimization problems.
Keywords
Membrane bioreactor; flux optimization; genetic algorithm; backpulse frequency;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
1 Park, B. G., W. G. Lee, W. Zhang, Y. K. Chang, and H. N. Chang. 1999. Effects of ultrasonic waves on filtration performance and fermentation in an internal membrane -filtration bioreactor. J. Microbiol. Biotechnol. 9: 243-248
2 Sondhi, R. and R. Bhave. 2001. Role of backpulsing in fouling minimization in crossflow filtration with ceramic membranes. J. Membr. Sci. 186: 41-52   DOI   ScienceOn
3 Redkar, S. G. and D. H. Davis. 1995. Crossflow microfiltration with high-frequency reverse filtration. AIChE J. 41: 501-508   DOI   ScienceOn
4 Gohel, V., D. Jiwan, P. Vyas, and H. S. Chhatpar. 2005. Statistical optimization of chitinase production by Panotoea dispersa to enhance degradation of crustacean chitin waste. J. Microbiol. Biotechnol. 15: 197-201   과학기술학회마을
5 Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Publishing Company, Inc., NY, U.S.A
6 Jayati, R. D., K. D. Pranab, and B. Rintu. 2005. Modeling and optimization of protease production by a newly isolated Pseudomonas sp. using a genetic algorithm. Process Biochem. 40: 879-884   DOI   ScienceOn
7 Roubos, J. A., G. Van Straten, and A. J. B. van Boxtel. 1999. An evolutionary strategy for fed batch bioreactor optimization concepts and performance. J. Biotechnol. 67: 173-187   DOI   ScienceOn
8 Tardieu, E., A. Grasmick, V. Geaugey, and J. Manem. 1999. Influence of hydrodynamics on fouling velocity in a recirculated MBR for wastewater treatment. J. Membr. Sci. 156: 131-140   DOI   ScienceOn
9 Serra, C., L. Durand-Bourlier, M. J. Clifton, P. Moulin, J. C. Rouch, and P. Aptel. 1999. Use of air sparging to improve backwash efficiency in hollow fiber modules. J. Membr. Sci. 161: 95-113   DOI   ScienceOn
10 Mores, W. D., C. N. Bowman, and R. H. Davis. 2000. Theoretical and experimental flux maximization by optimization of backpulsing. J. Membr. Sci. 165: 225-236   DOI   ScienceOn
11 Lee, S. M., J. Y. Jung, and Y. C. Chung. 2001. Novel method for enhancing permeate flux of submerged membrane system in two phase anaerobic reactor. Water Res. 35: 471-477   DOI   ScienceOn
12 Choi, J. W., W. C. Lee, J. M. Cho, Y. K. Kim, and S. Y. Park. 2002. Control of feed rate using neurocontroller incorporated with genetic algorithm in fed-batch cultivation of Scutellaria baicalensis georgi. J. Microbiol. Biotechnol. 12: 687-691
13 Grace, H. P. 1956. Structure and performance of filter media. AIChE J. 2: 307-315   DOI
14 Ueda, T., K. Hata, Y. Kikuoka, and O. Seino. 1997. Effects of aeration on suction pressure in a submerged membrane bioreactor. Wat. Res. 31: 489-494   DOI   ScienceOn
15 Chang, I, S., P. L. Clech, B. Jefferson, and S. Judd. 2002. Membrane fouling in membrane bioreactors for wastewater treatment. J. Environ. Eng. 128: 1018-1029   DOI   ScienceOn
16 Silva, C. M., D. W. Reeve, H. Husain, H. R. Rabie, and K. A. Woodhouse. 2000. Model for flux prediction in highshear microfiltration systems. J. Membr. Sci. 173: 87-98   DOI   ScienceOn
17 Mallubhotla, H. and G. Belfort. 1996. Semiempirical modeling of cross-flow microfiltration with periodic reverse filtration. Ind. Eng. Chem. Res. 35: 2920-2928   DOI   ScienceOn
18 Cabassud, C., S. Laborie, and J. M. Laine. 1997. How slug flow can improve ultrafiltration flux in organic hollow fiber. J. Membr. Sci. 128: 93-101   DOI   ScienceOn
19 Lin, J. Q., S. M. Lee, and Y. M. Koo. 2004. Model development for lactic acid fermentation and parameter optimization using genetic algorithm. J. Microbiol. Biotechnol. 14: 1163-1169
20 Redkar, S. G., V. Kuberkar, and R. H. Davis. 1996. Modeling of concentration polarization and depolarization with high-frequency backpulsing. J. Membr. Sci. 121: 229-242   DOI   ScienceOn
21 Kuberkar, V., P. Czekaj, and R. H. Davis. 1998. Flux enhancement for membrane filtration of bacterial suspensions using high-frequency backpulsing. Biotechnol. Bioeng. 60: 77-87   DOI   ScienceOn
22 Kennedy, M., S. M. Kim, I. Mutenyo, L. Broens, and J. Schippers. 1998. Intermittent crossflushing of hollow fiber ultrafiltration systems. Desalination 118: 175-187   DOI   ScienceOn