Browse > Article
http://dx.doi.org/10.5713/ajas.2004.13

The Genetic Development of Sire, Dam and Progenies and Genotype ${\times}$ Environment Interaction in a Beef Breeding System  

Bhuiyan, A.K.F.H. (Dept. of Animal Breeding & Genetics, Bangladesh Agricultural University)
Dietl, G. (Research Institute for the Biology of Farm Animals)
Klautschek, G. (Research Institute for the Biology of Farm Animals)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.17, no.1, 2004 , pp. 13-17 More about this Journal
Abstract
The aim of this study was to investigate genetic development and genotype${\times}$environment interactions (GEI) in postweaning body weight of fattening bulls at the end of test period (WT-T) under various beef fattening environments. Data on a total of 24,247 fattening bulls obtained from the industrial farm, breeding farms and testing stations were used. Heritability estimates for WT-T in all environments were nearly similar. Significant genetic developments of sire, dam and progenies for WT-T were observed in all environments. However, many differences in annual genetic developments between the environments were significant. The genetic correlations for WT-T between industrial farm and breeding farms, industrial farm and testing stations and breeding farms and testing stations were respectively 0.004, 0.004 and 0.013. These low estimates of genetic correlations and significant differences in genetic developments among environments clearly show the existence of GEI for WT-T among various fattening environments. Results of this study indicate the need for environment-specific genetic evaluation and selection of beef bulls for commercial beef production.
Keywords
Beef Breeding; Genetic Development; Genotype-environment Interaction;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Frelich, J., J. Voriskova, J. Kunik and J. Kvapilik. 1998. Fattening ability and carcass value of bulls-crossbreds of Bohemian Spotted Cattle with beef breeds. Arch. Tierz. 41(6):533-544.
2 Groeneveld, E., M. Kovac and T. Wang. 1990. Pest, a general purpose BLUP package for multivariate prediction and estimation. In: Proc. 4th World Congr. Genet. Appl. Livest. Prod. Edinburgh, UK. 13:488-491.
3 SAS Institute: SAS/STAT Guide Release 6.12. Cary, NC (1996).
4 Westell, R. A., R. A. Quass and L. D. Van Vleck. 1988. Genetic groups in an animal model. J. Dairy Sci. 71:1310-1318.
5 Wollert, J. 1985. Untersuchungen zur Eigenleistungspr$\"{u}$fung unter besonderer Ber$\"{u}$cksichtigung der Erh$\"{o}$hung der Genauigkeit der Zuchtwertschtzung, Berlin, Akad. Landwirtsch. Wiss. DDR, Diss. A.
6 Patterson, L. D. and R. Thompson. 1971. Recovery of interblock information when block sizes are unequal. Biometrika 58:545-447.
7 Oldenbroek, J. K., H. A. J. Laurijsen and J. Ten Napel. 1987. Relationship between performance test and progeny test for veal and beef production in Black and White dairy cattle. In: Performance testing of AI bulls for efficiency and beef production in dairy and dual-purpose breeds. Proc. EAAP publication 34:45-51.
8 Schoeman, S. J. and G. G. Jordaan. 1998. Animal${\times}$testing environment interaction on postweaning liveweight gains of young bulls. Aust. J. Agric. Res.49:607-612.
9 Henderson, C. R. 1973. Sire evaluation and genetic trends. In: Proc. of the Anim. Breed. and Genetics symposium in honour of Dr. Jay L. Lush (July, 1972). ASAS/ADSA, Champaign, III:10-28.
10 Henderson, C. R. 1975. Best linear unbiased estimation and prediction under a selection model. Biometrics 32:423-447.
11 Groeneveld, E. 1994. VCE, a multivariate multimodel REML (co)variance component estimation package. In: Proc. 5th World Congr. Genet. Appl. Livest. Prod. Guelph. Canada. 22:47-48.
12 Engellandt, T., N. Reinsch, Hans- Jürgen Schild and E. Kalm. 1998. Beef trait progeny test in German Simmentals-Definition of comparison groups with herd- year-season clustering. Arch. Tierz. 41(1/2):15-31.
13 Falconer, D. S. 1989. Introduction to Quantitative Genetics, Third edition, London, UK, Longman.
14 Klautschek, G. 1989. Relations between environmental conditions and genotype${\times}$environment interactions in fattening performances of cattle. Arch. Tierz. 32(4):383-388.
15 L$\"{o}$hrke, B. and G. Klautschek. 1971. Programm der Fleischrindz$\"{u}$chtung zur Erzeugung von Masthybriden f$\"{u}$r die industriem$\"{a}$ $\beta$ige Rindfleischproduktion. Teilabschlu$\beta$ber. FZ Dummerstorf-Rostock der Akad. Landwirtsch-Wiss. DDR.
16 Pahnish, O. F., J. J. Urick, W. C. Burns, W. T. Butts, M. Koger and R. L. Blackwell. 1985. Genotype${\times}$environment interactionin Hereford cattle: IV. Postweaning traits of bulls, J. Anim. Sci. 61:1146-53.
17 Tilsch, K. 1986. Zu den Beziehungen zwischen reproduktiven and produktiven Leistungen beim Fleischrind. Arch. Tierzucht 29:379-386.
18 Brown, M. A., A. H. Brown, W. G. Jackson and J. R. Miesner. 1993. Genotype${\times}$environment interactions in pos tweaning performance to yearling in Angus, Brahman, and reciprocalcross calves. J. Anim. Sci. 71:3273-9.
19 Korver, S., G. Averdunk and B. B. Anderson. 1987. Performance testing of AI bulls for efficiency and beef production in dairy and dual-purpose breeds. Proc. EAAP publication 34:214.
20 WEI, M., H. A. M. Steen, J. H. J. van der Werf and E. W. Brascamp. 1991. Relationship between purebred and crossbred parameters. 1. Variances and covariances under the one-locus model. J. Anim. Breed. & Genet. 108:253-261.
21 Averdunk, G., B. Woodward, G. Sauerer, H. J. Schild and F. Reinhard. 1987. Performance test results in relation to progeny tests under station and field conditions for Fleckvieh. In: Performance testing of AI bulls for efficiency and beef production in dairy and dual-purpose breeds. Proc. EAAP publication 34:36-44.