• Title/Summary/Keyword: generative learning strategy

Search Result 8, Processing Time 0.024 seconds

The Effects on Earth Science Concepts about Seasonal Changes by Generative Learning Strategy (발생학습 전략의 적용이 계절변화 관련 지구과학개념 변화에 미친 효과)

  • Jeong, Jin-Woo;Yoon, Sang-Wha;Lee, Hang-Ro
    • Journal of the Korean earth science society
    • /
    • v.24 no.3
    • /
    • pp.160-171
    • /
    • 2003
  • This study was designed to analyze the types of concepts about earth science related to seasonal changes, so as to develop a generative learning model focused on dissolving cognitive conflicts between the aforementioned concepts through debates and using said debates to find out how effectively the model works. There are 100 types of earth science concepts concering seasonal changes, 66 of which are unscientific in nature, including misconceptions. Through a second field trial and a research and development (R&D) process, a test on these concepts was developed, consisting of 14 items. For the experimental group, a four-phase generative learning strategy that reflects the types of earth science concepts and cognitive conflicts between such concepts was developed through pre-analysis and discussion, respectively. On the other hand, a traditional teaching and teaming strategy was used for the control group. A meaningful statistic gap found between the two groups through a covariance analysis, the significance level of which was 0.05. This result may be interpreted to mean that the generative teaming strategy is a possible alternative for correcting misconceptions about scientific concepts of seasonal changes.

A Study on Impact of Deep Learning on Korean Economic Growth Factor

  • Dong Hwa Kim;Dae Sung Seo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.90-99
    • /
    • 2023
  • This paper deals with studying strategy about impact of deep learning (DL) on the factor of Korean economic growth. To study classification of impact factors of Korean economic growth, we suggest dynamic equation of microeconomy and study methods on economic growth impact of deep learning. Next step is to suggest DL model to dynamic equation with Korean economy data with growth related factors to classify what factor is import and dominant factors to build policy and education. DL gives an influence in many areas because it can be implemented with ease as just normal editing works and speak including code development by using huge data. Currently, young generations will take a big impact on their job selection because generative AI can do well as much as humans can do it everywhere. Therefore, policy and education methods should be rearranged as new paradigm. However, government and officers do not understand well how it is serious in policy and education. This paper provides method of policy and education for AI education including generative AI through analysing many papers and reports, and experience.

Data Augmentation Techniques of Power Facilities for Improve Deep Learning Performance

  • Jang, Seungmin;Son, Seungwoo;Kim, Bongsuck
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.323-328
    • /
    • 2021
  • Diagnostic models are required. Data augmentation is one of the best ways to improve deep learning performance. Traditional augmentation techniques that modify image brightness or spatial information are difficult to achieve great results. To overcome this, a generative adversarial network (GAN) technology that generates virtual data to increase deep learning performance has emerged. GAN can create realistic-looking fake images by competitive learning two networks, a generator that creates fakes and a discriminator that determines whether images are real or fake made by the generator. GAN is being used in computer vision, IT solutions, and medical imaging fields. It is essential to secure additional learning data to advance deep learning-based fault diagnosis solutions in the power industry where facilities are strictly maintained more than other industries. In this paper, we propose a method for generating power facility images using GAN and a strategy for improving performance when only used a small amount of data. Finally, we analyze the performance of the augmented image to see if it could be utilized for the deep learning-based diagnosis system or not.

Interaction Between Students and Generative Artificial Intelligence in Critical Mineral Inquiry Using Chatbots (챗봇 활용 핵심광물 탐구에서 나타난 학생과 생성형 인공지능의 상호작용)

  • Sueim Chung;Jeongchan Kim;Donghee Shin
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.675-692
    • /
    • 2023
  • This study used a Chatbot, a generative artificial intelligence (AI), to analyze the interaction between the Chatbot and students when exploring critical minerals from an epistemological aspect. The results, issues to be kept in mind in the teaching and learning process using AI were discussed in terms of the role of the teacher, the goals of education, and the characteristics of knowledge. For this study, we conducted a three-session science education program using a Chatbot for 19 high school students and analyzed the reports written by the students. As a result, in terms of form, the students' questions included search-type questions and non-search-type questions, and in terms of content, in addition to various questions asking about the characteristics of the target, there were also questions requiring a judgment by combining various data. In general, students had a questioning strategy that distinguished what they should aim for and what they should avoid. The Chatbot's answer had a certain form and consisted of three parts: an introduction, a body, and a conclusion. In particular, the conclusion included commentary or opinions with opinions on the content, and in this, value judgments and the nature of science were revealed. The interaction between the Chatbot and the student was clearly evident in the process in which the student organized questions in response to the Chatbot's answers. Depending on whether they were based on the answer, independent or derived questions appeared, and depending on the direction of comprehensiveness and specificity, superordinate, subordinate, or parallel questions appeared. Students also responded to the chatbot's answers with questions that included critical thinking skills. Based on these results, we discovered that there are inherent limitations between Chatbots and students, unlike general classes where teachers and students interact. In other words, there is 'limited interaction' and the teacher's role to complement this was discussed, and the goals of learning using AI and the characteristics of the knowledge they provide were also discussed.

A many-objective evolutionary algorithm based on integrated strategy for skin cancer detection

  • Lan, Yang;Xie, Lijie;Cai, Xingjuan;Wang, Lifang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.80-96
    • /
    • 2022
  • Nowadays, artificial intelligence promotes the rapid development of skin cancer detection technology, and the federated skin cancer detection model (FSDM) and dual generative adversarial network model (DGANM) solves the fragmentation and privacy of data to a certain extent. To overcome the problem that the many-objective evolutionary algorithm (MaOEA) cannot guarantee the convergence and diversity of the population when solving the above models, a many-objective evolutionary algorithm based on integrated strategy (MaOEA-IS) is proposed. First, the idea of federated learning is introduced into population mutation, the new parents are generated through sub-populations employs different mating selection operators. Then, the distance between each solution to the ideal point (SID) and the Achievement Scalarizing Function (ASF) value of each solution are considered comprehensively for environment selection, meanwhile, the elimination mechanism is used to carry out the select offspring operation. Eventually, the FSDM and DGANM are solved through MaOEA-IS. The experimental results show that the MaOEA-IS has better convergence and diversity, and it has superior performance in solving the FSDM and DGANM. The proposed MaOEA-IS provides more reasonable solutions scheme for many scholars of skin cancer detection and promotes the progress of intelligent medicine.

An Analysis of Motivation in the Earth Science part of the 7th Grade Textbooks (2007 개정 7학년 과학 교과서에 나타난 지구과학의 동기유발 요소 분석)

  • Kim, Ju-Hyun;Han, Shin;Jeong, Jinwoo
    • Journal of Science Education
    • /
    • v.37 no.1
    • /
    • pp.11-22
    • /
    • 2013
  • Motivation is a generative power of making learning interesting and sustaining learning for students. Textbooks are important tools in carrying out lessons. And it is meaningful to analyze how textbooks motivate learning. This study is to analyze components of motivation in learning of the 7th grade middle school science textbooks. Keller's ARCS model was used for the analysis. The result of the study is as follows. First, the eight textbooks had various components from A1 to R3. Second, analyzing textbooks by parts of the textbooks, the body had the most motivation strategies and the next was the introduction, lastly the finishing part. Third, the most frequently used strategy on the attention factor is A1. And the most frequently used strategy in the relevance factor is R3.

  • PDF

Optimal Ratio of Data Oversampling Based on a Genetic Algorithm for Overcoming Data Imbalance (데이터 불균형 해소를 위한 유전알고리즘 기반 최적의 오버샘플링 비율)

  • Shin, Seung-Soo;Cho, Hwi-Yeon;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.49-55
    • /
    • 2021
  • Recently, with the development of database, it is possible to store a lot of data generated in finance, security, and networks. These data are being analyzed through classifiers based on machine learning. The main problem at this time is data imbalance. When we train imbalanced data, it may happen that classification accuracy is degraded due to over-fitting with majority class data. To overcome the problem of data imbalance, oversampling strategy that increases the quantity of data of minority class data is widely used. It requires to tuning process about suitable method and parameters for data distribution. To improve the process, In this study, we propose a strategy to explore and optimize oversampling combinations and ratio based on various methods such as synthetic minority oversampling technique and generative adversarial networks through genetic algorithms. After sampling credit card fraud detection which is a representative case of data imbalance, with the proposed strategy and single oversampling strategies, we compare the performance of trained classifiers with each data. As a result, a strategy that is optimized by exploring for ratio of each method with genetic algorithms was superior to previous strategies.

An Analysis on the Responses and the Behavioral Characteristics between Mathematically Promising Students and Normal Students in Solving Open-ended Mathematical Problems (수학 영재교육 대상 학생과 일반 학생의 개방형 문제해결 전략 및 행동 특성 분석)

  • Kim, Eun-Hye;Park, Man-Goo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.15 no.1
    • /
    • pp.19-38
    • /
    • 2011
  • The purpose of this study was to analyze the responses and the behavioral characteristics between mathematically promising students and normal students in solving open-ended problems. For this study, 55 mathematically promising students were selected from the Science Education Institute for the Gifted at Seoul National University of Education as well as 100 normal students from three 6th grade classes of a regular elementary school. The students were given 50 minutes to complete a written test consisting of five open-ended problems. A post-test interview was also conducted and added to the results of the written test. The conclusions of this study were summarized as follows: First, analysis and grouping problems are the most suitable in an open-ended problem study to stimulate the creativity of mathematically promising students. Second, open-ended problems are helpful for mathematically promising students' generative learning. The mathematically promising students had a tendency to find a variety of creative methods when solving open-ended problems. Third, mathematically promising students need to improve their ability to make-up new conditions and change the conditions to solve the problems. Fourth, various topics and subjects can be integrated into the classes for mathematically promising students. Fifth, the quality of students' former education and its effect on their ability to solve open-ended problems must be taken into consideration. Finally, a creative thinking class can be introduce to the general class. A number of normal students had creativity score similar to those of the mathematically promising students, suggesting that the introduction of a more challenging mathematics curriculum similar to that of the mathematically promising students into the general curriculum may be needed and possible.

  • PDF