Acknowledgement
This research was supported by Korea Electric Power Corporation under Grant R21IA02.
References
- 이동엽, 김준오, 윤정용, 신동열, 최민희 (2017). 인공지능 기반 배전 폴리머 현수애자 진단 장비 개발. 대한전기학회 학술대회 논문집, 1547-1548.
- 이동엽, 김준오, 윤정용, 최민희 (2017). Deep Learning을 활용한 배전 기자재 영상 진단 알고리즘 개발. 대한전기학회 학술대회 논문집, 1504-1505.
- Shorten, C., Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J Big Data 6, 60 (2019). https://doi.org/10.1186/s40537-019-0197-0.
- Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. Adv Neural Inf Process Syst 2014:2672-2680.
- M.-Y. Liu, X. Huang, A. Mallya, T. Karras, T. Aila, J. Lehtinen, and J. Kautz. Few-shot unsupervised image-to-image translation. In ICCV, 2019.
- E. Zakharov, A. Shysheya, E. Burkov, and V. Lempitsky. Few-shot adversarial learning of realistic neural talking head models. arXiv preprint arXiv:1905.08233, 2019.
- S. Sinha, H. Zhang, A. Goyal, Y. Bengio, H. Larochelle, and A. Odena. Small-gan: Speeding up gan training using coresets. arXiv preprint arXiv:1910.13540, 2019.
- Y. Wang, A. Gonzalez-Garcia, D. Berga, L. Herranz, F. S. Khan, and J. van de Weijer. Minegan: effective knowledge transfer from gans to target domains with few images. arXiv preprint arXiv:1912.05270, 2019.
- J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural networks? In NeurIPS, 2014.
- Sangwoo Mo, Minsu Cho, and Jinwoo Shin. Freeze the Discriminator: a Simple Baseline for Fine-Tuning GANs. arXiv:2002.10964v2, 2020.
- Transfer Learning, Lisa Torrey and Jude Shavlik, Handbook of Research on Machine Learning Applications, IGI Global, 2009.
- Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training Generative Adversarial Networks with Limited Data. arXiv:2006.06676v2 [cs.CV] 7 Oct 2020.