• Title/Summary/Keyword: generation of trajectory

Search Result 265, Processing Time 0.026 seconds

Path Planning of Soccer Robot using Bezier Curve (Bezier 곡선을 이용한 축구로봇의 경로 계획)

  • 조규상;이종운
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.06a
    • /
    • pp.161-165
    • /
    • 2002
  • This paper describe a trajectory generation method for a soccer robot using cubic Bezier curve. It is proposed that the method to determine the location of control points. The control points are determined by the distance and the velocity parameters of start and target positions. Simulation results show its traceability of the trajectory of mobile robot.

  • PDF

Robot PTP Trajectory Planning Using a Hierarchical Neural Network Structure (계층 구조의 신경회로망에 의한 로보트 PTP 궤적 계획)

  • 경계현;고명삼;이범희
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.10
    • /
    • pp.1121-1232
    • /
    • 1990
  • A hierarchical neural network structure is described for robot PTP trajectory planning. In the first level, the multi-layered Perceptron neural network is used for the inverse kinematics with the back-propagation learning procedure. In the second level, a saccade generation model based joint trajectory planning model in proposed and analyzed with several features. Various simulations are performed to investigate the characteristics of the proposed neural networks.

  • PDF

Energy-Efficient Reference Walking Trajectory Generation Using Allowable ZMP (Zero Moment Point) Region for Biped Robots (2족 보행 로봇을 위한 허용 ZMP (Zero Moment Point) 영역의 활용을 통한 에너지 효율적인 기준 보행 궤적 생성)

  • Shin, Hyeok-Ki;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1029-1036
    • /
    • 2011
  • An energy-efficient reference walking trajectory generation algorithm is suggested utilizing allowable ZMP (Zero-Moment-Point) region, which maxmizes the energy efficiency for cyclic gaits, based on three-dimensional LIPM (Linear Inverted Pendulum Model) for biped robots. As observed in natural human walking, variable ZMP manipulation is suggested, in which ZMP moves within the allowable region to reduce the joint stress (i.e., rapid acceleration and deceleration of body), and hence to reduce the consumed energy. In addition, opimization of footstep planning is conducted to decide the optimal step-length and body height for a given forward mean velocity to minimize a suitable energy performance - amount of energy required to carry a unit weight a unit distance. In this planning, in order to ensure physically realizable walking trajectory, we also considered geometrical constraints, ZMP stability condition, friction constraint, and yawing moment constraint. Simulations are performed with a 12-DOF 3D biped robot model to verify the effectiveness of the proposed method.

Semantic Trajectory Based Behavior Generation for Groups Identification

  • Cao, Yang;Cai, Zhi;Xue, Fei;Li, Tong;Ding, Zhiming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5782-5799
    • /
    • 2018
  • With the development of GPS and the popularity of mobile devices with positioning capability, collecting massive amounts of trajectory data is feasible and easy. The daily trajectories of moving objects convey a concise overview of their behaviors. Different social roles have different trajectory patterns. Therefore, we can identify users or groups based on similar trajectory patterns by mining implicit life patterns. However, most existing daily trajectories mining studies mainly focus on the spatial and temporal analysis of raw trajectory data but missing the essential semantic information or behaviors. In this paper, we propose a novel trajectory semantics calculation method to identify groups that have similar behaviors. In our model, we first propose a fast and efficient approach for stay regions extraction from daily trajectories, then generate semantic trajectories by enriching the stay regions with semantic labels. To measure the similarity between semantic trajectories, we design a semantic similarity measure model based on spatial and temporal similarity factor. Furthermore, a pruning strategy is proposed to lighten tedious calculations and comparisons. We have conducted extensive experiments on real trajectory dataset of Geolife project, and the experimental results show our proposed method is both effective and efficient.

A Real-Time Collision-Free Trajectory Planning and Control for a Car-Like Mobile Robot (이동 로봇을 위한 실시간 충돌 회피 궤적 계획과 제어)

  • 이수영;이석한;홍예선
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.105-114
    • /
    • 1999
  • By using the conceptual impedance and the elasticity of a serial chain of spring-damper system, a real-time collision-free trajectory generation algorithm is proposed. The reference points on a trajectory connected by the spring-damper system have a mechanism for self-Position adjustment to avoid a collision by the impedance, and the local adjustment of each reference point is propagated through the elasticity to a real robot at the end of the spring-damper system. As a result, the overall trajectory consisting of the reference points becomes free of collision with environmental obstacles and efficient having the shortest distance as possible. In this process, the reference points connected by the spring-damper system take role of virtual robot as global guidance for a real robot, and a cooperative optimization is carried out by the system of virtual robots. A control algorithm is proposed to implement the impedance for a car-like mobile robot.

  • PDF

A Robot Trajectory Planning based on the Dual Curvature Theory of a Ruled Surface (룰드서피스 듀얼곡률이론을 이용한 로봇경로계획)

  • 박상민;송문상;김재희;유범상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.482-487
    • /
    • 2002
  • This paper presents a robot trajectory generation method based on the dual curvature theory of ruled surfaces. Robot trajectory can be represented as a ruled surface generated by the TCP(Tool Center Point) and my unit vector among the tool frame. Dual curvature theory of ruled surfaces provides the robot control algorithm with the motion property parameters. With the differential properties of the ruled surface, the linear and angular motion properties of the robot end effector can be utilized in the robot trajectory planning.

  • PDF

Optimal Trajectory Planning for Capturing a Mobile Object (이동물체 포획을 위한 최적 경로 계획)

  • 황철호;이상헌;조방현;이장명
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.696-702
    • /
    • 2004
  • An optimal trajectory generation algorithm for capturing a moving object by a mobile robot in real-time is proposed in this paper. The linear and rotational velocities of the moving object are estimated using the Kalman filter, as a state estimator. For the estimation, the moving object is tracked by a 2-DOF active camera mounted on the mobile robot, which enables a mobile manipulator to track the mobile robot until the capturing moment. The optimal trajectory for capturing the moving object is dependent on the initial conditions of the mobile robot as well as the moving object. Therefore, real-time trajectory planning for the mobile robot is definitely required for the successful capturing of the moving object. The performance of proposed algorithm is verified through the real experiments and the superiority is demonstrated by comparing to other algorithms.

A Study on Effect Analysis of Trajectory-Based Arrival Management using Continuous Descent Operations (연속강하운용을 이용한 궤적 기반의 항공기 도착 관리 효과 분석 연구)

  • Eun-Mi Oh;Daekeun Jeon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.4
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, we propose trajectory-based arrival management using CDO (Continuos Descent Operations). The operational procedures with TBO (Trajectory-Based Operations) concept were established to allow aircraft and ground system to share the trajectories with each other in real time. The proposed operational concept was validated in the air traffic control simulation environment, which consists of controller working position, pseudo pilot system, air traffic generation system, and controllers' decision support system for arrival management using CDO. Simulation results compared with actual flight data indicate that proposed concept could improve the efficiency of traffic flow management in terms of total descending time and fuel consumption. And it was confirmed that if there is a system that can share and utilize the synchronized trajectory, it can be helpful to control arrival aircraft and apply CDO concept.

Detecting Road Intersections using Partially Similar Trajectories of Moving Objects (이동 객체의 부분 유사궤적 탐색을 활용한 교차로 검출 기법)

  • Park, Bokuk;Park, Jinkwan;Kim, Taeyong;Cho, Hwan-Gue
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.404-410
    • /
    • 2016
  • Automated road map generation poses significant research challenges since GPS-based navigation systems prevail in most general vehicles. This paper proposes an automated detecting method for intersection points using GPS vehicle trajectory data without any background digital map information. The proposed method exploits the fact that the trajectories are generally split into several branches at an intersection point. One problem in previous work on this intersection detecting is that those approaches require stopping points and direction changes for every testing vehicle. However our approach does not require such complex auxiliary information for intersection detecting. Our method is based on partial trajectory matching among trajectories since a set of incoming trajectories split other trajectory cluster branches at the intersection point. We tested our method on a real GPS data set with 1266 vehicles in Gangnam District, Seoul. Our experiment showed that the proposed method works well at some bigger intersection points in Gangnam. Our system scored 75% sensitivity and 78% specificity according to the test data. We believe that more GPS trajectory data would make our system more reliable and applicable in a practice.