• Title/Summary/Keyword: generalized-regression neural network (GRNN)

Search Result 26, Processing Time 0.026 seconds

Promoter Classification Using Genetic Algorithm Controlled Generalized Regression Neural Network (유전자 알고리즘과 일반화된 회귀 신경망을 이용한 프로모터 서열 분류)

  • 김성모;김근호;김병환
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.531-535
    • /
    • 2004
  • A new method is presented to construct a classifier. This was accomplished by combining a generalized regression neural network (GRNN) and a genetic algorithm (GA). The classifier constructed in this way is referred to as a GA-GRNN. The GA played a role of controlling training factors simultaneously. The GA-GRNN was applied to classify 4 different Promoter sequences. The training and test data were composed of 115 and 58 sequence patterns, respectively. The classifier performance was investigated in terms of the classification sensitivity and prediction accuracy. Compared to conventional GRNN, GA-GRNN significantly improved the total classification sensitivity as well as the total prediction accuracy. As a result, the proposed GA-GRNN demonstrated improved classification sensitivity and prediction accuracy over the convention GRNN.

Promoter classification using genetic algorithm controlled generalized regression neural network

  • Kim, Kun-Ho;Kim, Byun-Gwhan;Kim, Kyung-Nam;Hong, Jin-Han;Park, Sang-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2226-2229
    • /
    • 2003
  • A new method is presented to construct a classifier. This was accomplished by combining a generalized regression neural network (GRNN) and a genetic algorithm (GA). The classifier constructed in this way is referred to as a GA-GRNN. The GA played a role of controlling training factors simultaneously. In GA optimization, neuron spreads were represented in a chromosome. The proposed optimization method was applied to a data set, consisted of 4 different promoter sequences. The training and test data were composed of 115 and 58 sequence patterns, respectively. The range of neuron spreads was experimentally varied from 0.4 to 1.4 with an increment of 0.1. The GA-GRNN was compared to a conventional GRNN. The classifier performance was investigated in terms of the classification sensitivity and prediction accuracy. The GA-GRNN significantly improved the total classification sensitivity compared to the conventional GRNN. Also, the GA-GRNN demonstrated an improvement of about 10.1% in the total prediction accuracy. As a result, the proposed GA-GRNN illustrated improved classification sensitivity and prediction accuracy over the conventional GRNN.

  • PDF

DNA Sequence Classification Using a Generalized Regression Neural Network and Random Generator (난수발생기와 일반화된 회귀 신경망을 이용한 DNA 서열 분류)

  • 김성모;김근호;김병환
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.525-530
    • /
    • 2004
  • A classifier was constructed by using a generalized regression neural network (GRU) and random generator (RG), which was applied to classify DNA sequences. Three data sets evaluated are eukaryotic and prokaryotic sequences (Data-I), eukaryotic sequences (Data-II), and prokaryotic sequences (Data-III). For each data set, the classifier performance was examined in terms of the total classification sensitivity (TCS), individual classification sensitivity (ICS), total prediction accuracy (TPA), and individual prediction accuracy (IPA). For a given spread, the RG played a role of generating a number of sets of spreads for gaussian functions in the pattern layer Compared to the GRNN, the RG-GRNN significantly improved the TCS by more than 50%, 60%, and 40% for Data-I, Data-II, and Data-III, respectively. The RG-GRNN also demonstrated improved TPA for all data types. In conclusion, the proposed RG-GRNN can effectively be used to classify a large, multivariable promoter sequences.

Using generalized regression neural network (GRNN) for mechanical strength prediction of lightweight mortar

  • Razavi, S.V.;Jumaat, M.Z.;Ahmed H., E.S.;Mohammadi, P.
    • Computers and Concrete
    • /
    • v.10 no.4
    • /
    • pp.379-390
    • /
    • 2012
  • In this paper, the mechanical strength of different lightweight mortars made with 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 and 100 percentage of scoria instead of sand and 0.55 water-cement ratio and 350 $kg/m^3$ cement content is investigated. The experimental result showed 7.9%, 16.7% and 49% decrease in compressive strength, tensile strength and mortar density, respectively, by using 100% scoria instead of sand in the mortar. The normalized compressive and tensile strength data are applied for artificial neural network (ANN) generation using generalized regression neural network (GRNN). Totally, 90 experimental data were selected randomly and applied to find the best network with minimum mean square error (MSE) and maximum correlation of determination. The created GRNN with 2 input layers, 2 output layers and a network spread of 0.1 had minimum MSE close to 0 and maximum correlation of determination close to 1.

Modeling of etch microtrenching using generalized regression neural network and genetic algorithm (일반화된 회귀신경망과 유전자 알고리즘을 이용한 식각 마이크로 트렌치 모델링)

  • Lee, Duk-Woo;Kim, Byung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.27-29
    • /
    • 2005
  • Using a generalized regression neural network, etch microtrenching was modeled. All neurons in the pattern layer were equipped with multi-factored spreads and their complex effects on the prediction performance were optimized by means of a genetic algorithm. For comparison, GRNN model was constructed in a conventional way. Comparison result revealed that GA-GRNN model was more accurate than GRNN model by about 30%. The microtrenching data were collected during the etching of silicon oxynitride film and the etch process was characterized by a statistical experimental design.

  • PDF

Data Interpolation and Design Optimisation of Brushless DC Motor Using Generalized Regression Neural Network

  • Umadevi, N.;Balaji, M.;Kamaraj, V.;Padmanaban, L. Ananda
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.188-194
    • /
    • 2015
  • This paper proposes a generalized regression neural network (GRNN) based algorithm for data interpolation and design optimization of brushless dc (BLDC) motor. The procedure makes use of magnet length, stator slot opening and air gap length as design variables. Cogging torque and average torque are treated as performance indices. The optimal design necessitates mitigating the cogging torque and maximizing the average torque by varying design variables. The data set for interpolation and ensuing design optimisation using GRNN is obtained by modeling a standard BLDC motor using finite element analysis (FEA) tool MagNet 7.1.1. The performance indices of the standard motor obtained using FEA are validated with an experimental model and an analytical method. The optimal design is authenticated using particle swarm optimization (PSO) algorithm and the performance indices of the optimal design obtained using GRNN is validated using FEA. The results indicate the suitability of GRNN as an interpolation and design optimization tool for a BLDC motor.

Eye Gaze Tracking System Under Natural Head Movements (머리 움직임이 자유로운 안구 응시 추정 시스템)

  • ;Matthew, Sked;Qiang, Ji
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.5
    • /
    • pp.57-64
    • /
    • 2004
  • We proposed the eye gaze tracking system under natural head movements, which consists of one narrow-view field CCD camera, two mirrors which of reflective angles are controlled and active infra-red illumination. The mirrors' angles were computed by geometric and linear algebra calculations to put the pupil images on the optical axis of the camera. Our system allowed the subjects head to move 90cm horizontally and 60cm vertically, and the spatial resolutions were about 6$^{\circ}$ and 7$^{\circ}$, respectively. The frame rate for estimating gaze points was 10~15 frames/sec. As gaze mapping function, we used the hierarchical generalized regression neural networks (H-GRNN) based on the two-pass GRNN. The gaze accuracy showed 94% by H-GRNN improved 9% more than 85% of GRNN even though the head or face was a little rotated. Our system does not have a high spatial gaze resolution, but it allows natural head movements, robust and accurate gaze tracking. In addition there is no need to re-calibrate the system when subjects are changed.

Reservoir Water Level Forecasting Using Machine Learning Models (기계학습모델을 이용한 저수지 수위 예측)

  • Seo, Youngmin;Choi, Eunhyuk;Yeo, Woonki
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.97-110
    • /
    • 2017
  • This study investigates the efficiencies of machine learning models, including artificial neural network (ANN), generalized regression neural network (GRNN), adaptive neuro-fuzzy inference system (ANFIS) and random forest (RF), for reservoir water level forecasting in the Chungju Dam, South Korea. The models' efficiencies are assessed based on model efficiency indices and graphical comparison. The forecasting results of the models are dependent on lead times and the combination of input variables. For lead time t = 1 day, ANFIS1 and ANN6 models yield superior forecasting results to RF6 and GRNN6 models. For lead time t = 5 days, ANN1 and RF6 models produce better forecasting results than ANFIS1 and GRNN3 models. For lead time t = 10 days, ANN3 and RF1 models perform better than ANFIS3 and GRNN3 models. It is found that ANN model yields the best performance for all lead times, in terms of model efficiency and graphical comparison. These results indicate that the optimal combination of input variables and forecasting models depending on lead times should be applied in reservoir water level forecasting, instead of the single combination of input variables and forecasting models for all lead times.

Promoter classification using random generator-controlled generalized regression neural network

  • Kim, Kunho;Kim, Byungwhan;Kim, Kyungnam;Hong, Jin-Han;Park, Sang-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.595-598
    • /
    • 2003
  • A new classifier is constructed by using a generalized regression neural network (GRNN) in conjunction with a random generator (RC). The RG played a role of generating a number of sets of random spreads given a range for gaussian functions in the pattern layer, The range experimentally varied from 0.4 to 1.4. The DNA sequences consisted 4 types of promoters. The performance of classifier is examined in terms of total classification sensitivity (TCS), and individual classification sensitivity (ICS). for comparisons, another GRNN classifier was constructed and optimized in conventional way. Compared GRNN, the RG-GRNN demonstrated much improved TCS along with better ICS on average.

  • PDF

Analysis of Neural Network Approaches for Nonlinear Modeling of Switched Reluctance Motor Drive

  • Saravanan, P;Balaji, M;Balaji, Nagaraj K;Arumugam, R
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1548-1555
    • /
    • 2017
  • This paper attempts to employ and investigate neural based approaches as interpolation tools for modeling of Switched Reluctance Motor (SRM) drive. Precise modeling of SRM is essential to analyse the performance of control strategies for variable speed drive application. In this work the suitability of Generalized Regression Neural Network (GRNN) and Extreme Learning Machine (ELM) in addition to conventional neural network are explored for improving the modeling accuracy of SRM. The neural structures are trained with the data obtained by modeling of SRM using Finite Element Analysis (FEA) and the trained neural network is incorporated in the model of SRM drive. The results signify the modeling accuracy with GRNN model. The closed loop drive simulation is performed in MATLAB/Simulink environment and the closeness of the results in comparison with the experimental prototype validates the modeling approach.