Eye Gaze Tracking System Under Natural Head Movements

머리 움직임이 자유로운 안구 응시 추정 시스템

  • ;
  • Matthew, Sked (Electrical, Computer, and Systems Engineering Department, RPI) ;
  • Qiang, Ji (Electrical, Computer, and Systems Engineering Department, RPI)
  • 김수찬 (한경대학교 생물정보통신대학원) ;
  • ;
  • Published : 2004.09.01

Abstract

We proposed the eye gaze tracking system under natural head movements, which consists of one narrow-view field CCD camera, two mirrors which of reflective angles are controlled and active infra-red illumination. The mirrors' angles were computed by geometric and linear algebra calculations to put the pupil images on the optical axis of the camera. Our system allowed the subjects head to move 90cm horizontally and 60cm vertically, and the spatial resolutions were about 6$^{\circ}$ and 7$^{\circ}$, respectively. The frame rate for estimating gaze points was 10~15 frames/sec. As gaze mapping function, we used the hierarchical generalized regression neural networks (H-GRNN) based on the two-pass GRNN. The gaze accuracy showed 94% by H-GRNN improved 9% more than 85% of GRNN even though the head or face was a little rotated. Our system does not have a high spatial gaze resolution, but it allows natural head movements, robust and accurate gaze tracking. In addition there is no need to re-calibrate the system when subjects are changed.

한 대의 카메라와 반사각의 조절이 가능한 2개의 거울, 그리고 별도의 적외선 광원을 이용하여 자유로운 머리 움직임이 가능한 안구 응시점 추정 시스템을 제안하였다. 거울의 회전 각도는 카메라의 광축(opticai axis) 상에 안구가 올 수 있도록 공간 좌표계와 선형 방정식을 이용하여 계산하였다 제안한 시스템은 수평 방향으로 90cm 수직 방향으로 60cm 범위 내에서의 머리 움직임이 가능하였고, 응시점의 공간 해상도 각각 6°, 7°이며, 시간 해상도는 10~15 frames/sec이었다. Generalized regression neural networks(GRNN)을 기반으로 하여 2단계의 GRNN을 거치는 소위 hierarchical generalized regression neural networks(H-GRNN)을 이용하여 얻어진 인자를 모니터 좌표로 변환하였다. GRNN을 한번 사용하였을 경우 정확도가 85%이었으나 H-GRNN을 이용할 경우 약 9% 높은 94%의 정확도를 얻을 수 있었다. 그리고 입력 파라미터의 정규화를 통하여 재보정의 불편함을 제거했을 뿐만 아니라 약간의 얼굴 회전이 발생하였을 경우에도 동일한 성능을 보였다. 본 시스템은 공간 해상도는 크게 높지 않으나 자유로운 머리 움직임을 허용되므로 안정성과 피검자의 활동에 제약을 줄였다는 점에서 의의를 찾을 수 있다.

Keywords

References

  1. H. Bekkering and S. F. W. Neggers, 'Visual search is modulated by action intentions,' Psychological Science, vol. 13, pp. 370-374, 2002 https://doi.org/10.1111/j.0956-7976.2002.00466.x
  2. P. Vuilleumier, 'Perceived gaze direction in faces and spatial attention: a study in patients with parietal damage and unilateral neglect,' Neuropsychologia, vol. 40, pp. 1013-26, 2002 https://doi.org/10.1016/S0028-3932(01)00153-1
  3. M. L. Phillips and A. S. David, 'Visual scan paths are abnormal in deluded schizophrenics,' Neuropsychologia, vol. 35, pp. 99-105, 1997 https://doi.org/10.1016/S0028-3932(96)00061-9
  4. G. Csibra, 'Teleological and referential understanding of action in infancy,' Philos Trans R Soc Lond B Biol Sci, vol. 358, pp. 447-58, 2003 https://doi.org/10.1098/rstb.2002.1235
  5. M. K. Tanenhaus and M. J. SpiveyKnowlton, 'Eye-tracking,' Language and Cognitive Processes, vol. 11, pp. 583-588, 1996 https://doi.org/10.1080/016909696386971
  6. C. L. Kleinke, 'Gaze and eye contact: a research review,' Psychol Bull, vol. 100, pp. 78-100, 1986 https://doi.org/10.1037/0033-2909.100.1.78
  7. C. H. Morimoto, D. Koons, A. Amir, and M. Flickner, 'Pupil detection and tracking using multiple light sources,' Image and Vision Computing, vol. 18, pp. 331-335, 2000 https://doi.org/10.1016/S0262-8856(99)00053-0
  8. Y. Ebisawa, 'Improved video-based eye-gaze detection method,' Instrumentation and Measurement, IEEE Transactions on, vol. 47, pp. 948-955, 1998 https://doi.org/10.1109/19.744648
  9. D. H. Yoo, J. H. Kim, D. H. Kim, and M. J. Chung, 'A human-robot interface using vision-based eye gaze estimation system,' presented at Intelligent Robots and System, 2002. IEEE/RSJ International Conference on, 2002 https://doi.org/10.1109/IRDS.2002.1043896
  10. Q. Ji and X. J. Yang, 'Real-time eye, gaze, and face pose tracking for monitoring driver vigilance,' Real-Time Imaging, vol. 8, pp. 357-377, 2002 https://doi.org/10.1006/rtim.2002.0279
  11. K. Ukai, S. Saida, and N. Ishikawa, 'Use of infrared TV cameras built into head-mounted display to measure torsional eye movements,' Japanese Journal of Ophthalmology, vol. 45, pp. 5-12, 200l https://doi.org/10.1016/S0021-5155(00)00289-6
  12. 김수찬, 남기창, 이원상, 김덕원, 'Development of Videooculograph for Vestibular Function Test', 대한전자공학회 논문지 SC편 40(3):189-198, 2003
  13. B. Nourddin, A Non-Contact Video-oculograph For Tracking Gaze in a Human Computer Interface, Thesis(M.A.Sc.), University of British Columbia, 2003
  14. Q. Ji and Z. Zhu, 'Non-intrusive Eye and Gaze Tracking for Natural Human Computer Interaction,' MMI-interaktiv Journal, vol. 6, 2003
  15. D. F. Specht, 'A General Regression Neural Network,' IEEE Transactions on Neural Networks, vol. 2, pp. 568-576, 1991 https://doi.org/10.1109/72.97934
  16. Pontech, SV203 Servo Motor Controller Board User's Manual, http://www.pontech.comproducts/sv200/sv203_ v.l.20_ webmanual.pdf