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1. INTRODUCTION 
 
As a biometric, artificial neural network (ANN) has been 
extensively applied to map and identify specific biological 
functions in DNA, RNA, and protein sequences [1-3]. 
Compared to other algorithms, ANN demonstrated superior 
functional mapping ability. This is mainly attributed to the 
ANN capability of high correlation and interpolation. Many 
different types of neural networks have been applied to 
predicting DNA sequences. These include an adaptive 
resonance theory-based network, backpropagation neural 
network, or counter-propagation network. Another paradigm 
that might be effectively used is a GRNN [4]. Its application 
to sequence analysis has been little reported. The GRNN 
performance depends on one training factor called ‘spread’ of 
the gaussian function in the pattern layer. Conventionally, the 
spread effect is optimized by experimentally adjusting the 
spread. Most critical problem is that all neurons in the pattern 
layer are quipped with one single, optimized spread. By 
adopting multi-spreads, it is expected that the GRNN 
predictive ability could be improved.  
   In this study, a method to construct a GRNN classifier of 
multi-valued spreads is presented. This is accomplished by 
applying a genetic algorithm (GA). The GA is used to search 
for a set of optimized spreads. For convenience, the 
GA-controlled GRNN is called “GA-GRNN”. The proposed 
GA-GRNN is applied to classify 4 promoters. The 
performance is evaluated in terms of the prediction accuracy 
and the classification sensitivity. This is conducted for all or 
individual set of promoter sequences. The GA-GRNN is also 
compared to conventional GRNN. 
 

2.  EXPERIMENTAL DATA 
 
   The DNA data evaluated consist of 4 types of promoters, 
including Oriza Sativa (OS), Arabidopsis Thaliana (AT), 
Escherichia Coli (EC), and Zymomonas Mobils (ZM). 
The first two promoters, OS and AT, can be classified into an 
eukaryotic promoter. The other EC and ZM belong to 
prokaryotic promoter. Promoter sequences for AT were 
obtained by comparing full-length cDNAs [5] with a genomic 

DNA [6]. Since DNA sequences upstream of the cDNAs 
contain the promoter activity, approximately 1-kb genomic 
DNA regions upstream of the translation start site (ATG 
codon) were selected in constructing the database. The OS 
promoter sequences were collected in the similar way using 
the rice database [7]. Meanwhile, the whole genome 
sequences of two bacterial species, the EC [8] and ZM were 
obtained from NCBI with accession number U00096 and 
in-house database of Macrogen, respectively. The open 
reading frames (ORFs) from ZM were derived from the 
prediction by using a program 'Glimmer V2.0' [9] and 
analyzed further with a BlastX [10] program with 
non-redundant protein database of NCBI. For the two sets 
of genomic data, a number of promoter sequence were 
collected by searching promoters, and each sequence consisted 
of 500 bases upstream and 100 bases downstream from the 
cordon start site. 
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   The training data consist of 115 sets of promoter 
sequences. More specifically, the data is composed of 20 OS, 
25 AT, 35 ET, and 35 ZM. The test data for evaluating model 
appropriateness are composed of 58 sets of promoters, 13 OS, 
15 AT, 15 ET, and 15 ZM. Each sequence pattern consisted of 
146 base pairs. 
 

3.  GENERALIZED REGRESSION NEURAL 
NETWORK 

 
   A schematic of GRNN is depicted in Fig. 1. As shown in 
Fig. 1, the GRNN consists of four layers, including the input 
layer, pattern layer, summation layer, and output layer. Each 
input unit in the first layer corresponds to individual process 
parameter. The first layer is fully connected to the second, 
pattern layer, where each unit represents a training pattern and 
its output is a measure of the distance of the input from the 
stored patterns. Each pattern layer unit is connected to the two 
neurons in the summation layer: S-summation neuron and D- 
summation neuron. The S-summation neuron computes the 
sum of the weighted outputs of the pattern layer while the 
D-summation neuron calculates the unweighted outputs of the 
pattern neurons. 
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Fig. 1 Schematic of generalized regression neural network. 
 

The connection weight between the ith neuron in the 
pattern layer and the S-summation neuron is yi, the target 
output value corresponding to the ith input pattern. For 
D-summation neuron, the connection weight is unity. The 
output layer merely divides the output of each S-summation 
neuron by that of each D-summation neuron, yielding the 
predicted value to an unknown input vector  as x
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where n indicates the number of training patterns and the D 
function in (1) is defined as 
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where P indicates the number of elements of an input vector. 
The Xj and represent the jth element of and , 

respectively. The 
jix x ix

ζ is generally referred to as the spread, 
whose optimal value is conventionally determined by 
adjusting it within certain experimental range. 
 

4. RESULTS 
 
   The performance of classifier is evaluated in terms of the 
prediction accuracy and classification sensitivity. The 
prediction accuracy is measured by the root mean-squared 
error (RMSE) metric defined as 
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where p and q represent the number of output neurons and test 
patterns, respectively. The dij and outij represent the desired 
and calculated outputs of the ith output neuron for the jth test 
pattern. The prediction accuracies calculated for all data sets 
and individual data set are referred to as the total prediction 
accuracy (TPA) and individual prediction accuracy (IPA). The 

other classification sensitivity is defined as the total number of 
the test sequence patterns correctly classified into their 
respective classes. The classification sensitivity is evaluated as 

function of the threshold expressed as 

            

a 
 

 Thresholdoutd ijij 〈−           (4) 

mine classifier performance in 
e most stringent situation. 

 

 
Similarly as in the case of the prediction accuracy, the 
classification sensitivity is measured for all and individual 
data sets, each called TCS and ICS, respectively. Meanwhile, 
the threshold is set to 0.9 to exa
th
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Fig. 3 Prediction accuracy of GRNN as a function of spread. 
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For comparison, the performance of conventional GRNN 
is first investigated. The spread varied incrementally from 0.4 
to 1.4 by 0.1. For each spread, GRNN classifier was 
constructed. The TCS measured by (4) is displayed in Fig. 2 as 
a function of the spread. As depicted in Fig. 2, the TCS 
generally decreases with increasing the spread. The highest 
TCS of 14 is obtained at 0.4, 0.5, and 0.6. Fig. 3 shows the 
prediction behavior of the classifier for the same spread range. 
Both TPA and IPA decrease with increasing the spread. The 
IPA for AT is largest compared to others. As observed in Fig. 
3, the smallest TPA and IPAs are obtained at 1.4. Then, the 
ICS of the classifier with both TCS and TPA optimized is 
examined. Comparing Fig. 2 and Fig. 3 reveals that both TCS 
and TPA seem to be optimized at 0.4, 0.5, and 0.6. To 
determine one classifier, the corresponding TPAs were 
calculated, and the smallest TPA of 0.573 was obtained at 0.4. 
The ICSs of the TCS for the classifier optimized at 0.4 are 6 
OS, 0 AT, 4 EC, and 4 ZM. This reveals that the GRNN is 
incapable of classifying the AT. This is expected from the 
largest RMSE as noticed earlier. 
 
4.2 GA-GRNN 
 

The GA was utilized to search for a particular factor 
setting that minimizes the prediction accuracy. In GA 
optimization, each training factor was coded in a real value 
and this resulted in a total chromosome length of 115 bits. 
During each computational cycle, an initial population of 100 
potential solutions was created with each manipulated by the 
genetic operators. Next, the performance of each individual of 
the population is evaluated and a selection mechanism is 
subsequently activated to choose the best string with the 
highest fitness for the genetic manipulation process. The 
crossover operator takes two chromosomes and parts of their 
genetic information are swapped to produce two new 
chromosomes based on a specified crossover probability. 
Another mutation probability is given to the mutation operator, 
which randomly changes a fixed number of bits every 
generation. Here, those numerical probabilities of crossover 
and mutation used in this optimization are 0.9 and 0.1, 
respectively. A particular input setting generated by GA meets 
a given fitness function expressed as: 
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where CS is the calculated classification sensitivity and r  is 
the number of promoter attributes. Since each attribute was 
optimized individually, the r  is equal to unity. The GA was 
then implemented with setting the CS in Eq. (5) to zero for 
each promoter attribute. As a termination criterion, the 
generation number was set to 100.  
   The performance of GA-GRNN is examined as a function 
of the spread. The experimental range of the spread is same as 
that employed in constructing GRNN classifier. For a given 
spread, the chromosomes were initially randomized within 
that value and one best GA-GRNN is determined as the 
generation is completed at 100. The TCSs of the best 
GA-GRNN are plotted in Fig. 4. As depicted in Fig. 4, the 
TCS initially decreases and then seems to remain constant at 
larger spreads of more than 1.1. One optimal classifier with 
the highest TCS is obtained at two spreads, 0.4 and 0.5. The 
corresponding TCS is 21. Compared to the optimized GRNN, 
the GA-GRNN considerably improved the TCS by 7.  
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Fig. 4 Total classification sensitivity of GA-GRNN as a 

function of range of random spread. 
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Fig. 5  Prediction accuracy of GA-GRNN as a function of 

spread. 
 

Fig. 5 shows the prediction behavior of GA-GRNN as a 
function of the spread. Both TPA and IPAs are included. As 
illustrated in Fig. 5, each IPA behavior with the spread is quite 
complex. In contrast, the TPA appears to increase consistently 
with the spread. This is in contrast to what was observed for 
the GRNN in Fig. 2. The smallest TPA of 0.515 is obtained at 
0.5. Compared to that (0.573) for GRNN, this demonstrates of 
about 10.1% improvements. The ICSs of the selected 
GA-GRNN at 0.5 are 6 OS, 1 AT, 11 EC, and 3 ZM, 
respectively. Compared to those for the optimized GRNN, the 
GA-GRNN drastically improved the ICS by 7 for EC. 
Consequently, the GA-GRNN demonstrated much improved 
TCS along with better ICS on average. In Table I, IPAs of 
GRNN and GA-GRNN classifiers optimized at 0.4 and 0.5 
respectively are compared. As represented in Table I, the 
GA-GRNN improved all IPAs but the case of ZM. The 
improvement is considerable in the two cases of OS and EC.            
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As a result, the proposed GA-GRNN illustrated improved 
TPA and TCS. On average, this was demonstrated even in 
either ICS or IPA. 
 

Table 1 Comparison of IPA of GRNN and GA-GRNN 
 
Promoter type GRNN GA-GRNN Improvement(%) 

OS 0.518 0.318 38.6 
AT 0.701 0.644 8.1 
EC 0.577 0.370 35.8 
ZM 0.574 0.620 -8.0 

 
5. CONCLUSIONS 

 
Using the GA, a GRNN classifier was constructed and 

applied to classify DNA promoter sequences. The GA was 
used to optimize spreads for the gaussian functions in the 
pattern layer. The GA-GRNN was compared to conventional 
GRNN in terms of the classification sensitivity and prediction 
accuracy. Comparisons revealed that the GA-GRNN was 
much better than conventional GRNN in classifying and 
prediction accuracy. Particularly, the improvement was 
significant in the TCS. The average performance of 
GA-GRNN was better than that for GRNN in classifying 
promoters individually. The proposed classifier is very simple 
to implement and optimize. By the demonstrated high 
classification capability, the GA-GRNN is expected widely 
used for predicting or classifying large volume of other 
bio-medical data. 
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