• 제목/요약/키워드: generalized operator

검색결과 299건 처리시간 0.02초

ON OPTIMALITY OF GENERALIZED OPTIMIZATION PROBLEMS ASSOCIATED WITH OPERATOR AND EXISTENCE OF (Tη; ξθ)-INVEX FUNCTIONS

  • Das, Prasanta Kumar
    • East Asian mathematical journal
    • /
    • 제33권1호
    • /
    • pp.83-102
    • /
    • 2017
  • The main purpose of this paper is to introduce a pair new class of primal and dual problem associated with an operator. We prove the sufficient optimality theorem, weak duality theorem and strong duality theorem for these problems. The equivalence between the generalized optimization problems and the generalized variational inequality problems is studied in ordered topological vector space modeled in Hilbert spaces. We introduce the concept of partial differential associated (PDA)-operator, PDA-vector function and PDA-antisymmetric function to show the existence of a new class of function called, ($T_{\eta};{\xi}_{\theta}$)-invex functions. We discuss first and second kind of ($T_{\eta};{\xi}_{\theta}$)-invex functions and establish their existence theorems in ordered topological vector spaces.

ON THE GENERALIZED SET-VALUED MIXED VARIATIONAL INEQUALITIES

  • Zhao, Yali;Liu, Zeqing;Kang, Shin-Min
    • 대한수학회논문집
    • /
    • 제18권3호
    • /
    • pp.459-468
    • /
    • 2003
  • In this paper, we introduce and study a new class of the generalized set-valued mixed variational inequalities. Using the resolvent operator technique, we construct a new iterative algorithm for solving this class of the generalized set-valued mixed variational inequalities. We prove the existence of solutions for the generalized set-valued mixed variational inequalities and the convergence of the iterative sequences generated by the algorithm.

ALGEBRAIC SPECTRAL SUBSPACES OF GENERALIZED SCALAR OPERATORS

  • Han, Hyuk
    • 대한수학회논문집
    • /
    • 제9권3호
    • /
    • pp.617-627
    • /
    • 1994
  • Algebraic spectral subspaces and admissible operators were introduced by K. B. Laursen and M. M. Neumann in 1988 [L88], [N]. These concepts are useful in automatic continuity problems of intertwining linear operators on Banach spaces. In this paper we characterize the algebraic spectral subspaces of generalized scalar operators. From this characterization we show that generalized scalar operators are admissible. Also we show that doubly power bounded operators are generalized scalar. And using the spectral capacity we show that a generalized scalar operator is decomposable. Then we give an example of an operator which is not admissible but decomposable.

  • PDF

A VARIANT OF THE GENERALIZED VECTOR VARIATIONAL INEQUALITY WITH OPERATOR SOLUTIONS

  • Kum, Sang-Ho
    • 대한수학회논문집
    • /
    • 제21권4호
    • /
    • pp.665-673
    • /
    • 2006
  • In a recent paper, Domokos and $Kolumb\'{a}}n$ [2] gave an interesting interpretation of variational inequalities (VI) and vector variational inequalities (VVI) in Banach space settings in terms of variational inequalities with operator solutions (in short, OVVI). Inspired by their work, in a former paper [4], we proposed the scheme of generalized vector variational inequality with operator solutions (in short, GOVVI) which extends (OVVI) into a multivalued case. In this note, we further develop the previous work [4]. A more general pseudomonotone operator is treated. We present a result on the existence of solutions of (GVVI) under the weak pseudomonotonicity introduced in Yu and Yao [8] within the framework of (GOVVI) by exploiting some techniques on (GOVVI) or (GVVI) in [4].

A Study of Marichev-Saigo-Maeda Fractional Integral Operators Associated with the S-Generalized Gauss Hypergeometric Function

  • Bansal, Manish Kumar;Kumar, Devendra;Jain, Rashmi
    • Kyungpook Mathematical Journal
    • /
    • 제59권3호
    • /
    • pp.433-443
    • /
    • 2019
  • In this work, we evaluate the Mellin transform of the Marichev-Saigo-Maeda fractional integral operator with Appell's function $F_3$ type kernel. We then discuss six special cases of the result involving the Saigo fractional integral operator, the $Erd{\acute{e}}lyi$-Kober fractional integral operator, the Riemann-Liouville fractional integral operator and the Weyl fractional integral operator. We obtain new and known results as special cases of our main results. Finally, we obtain the images of S-generalized Gauss hypergeometric function under the operators of our study.

GENERALIZED JENSEN'S EQUATIONS IN A HILBERT MODULE

  • An, Jong Su;Lee, Jung Rye;Park, Choonkil
    • Korean Journal of Mathematics
    • /
    • 제15권2호
    • /
    • pp.135-148
    • /
    • 2007
  • We prove the stability of generalized Jensen's equations in a Hilbert module over a unital $C^*$-algebra. This is applied to show the stability of a projection, a unitary operator, a self-adjoint operator, a normal operator, and an invertible operator in a Hilbert module over a unital $C^*$-algebra.

  • PDF

REMARK ON GENERALIZED k-QUASIHYPONORMAL OPERATORS

  • Ko, Eun-Gil
    • 대한수학회보
    • /
    • 제35권4호
    • /
    • pp.701-707
    • /
    • 1998
  • An operator $T{\in} {{\mathcal L}(H)}$ is generalized k-quasihyponormal if there exist a constant M>0 such that $T^{\ast k}[M^2(T-z)^{\ast}(T-z)-(T-z)(T-z)^{\ast}]T^k{\geq}0$ for some integer $k{\geq}0$ and all $Z{\in} {\mathbf C}$. In this paper, we show that it T is a generalized k-quasihyponormal operator with the property $0{\not\in}{\sigma}(T)$, then T is subscalar of order 2. As a corollary, we get that such a T has a nontrivial invariant subspace if its spectrum has interior in C.

  • PDF

GENERALIZED WEYL'S THEOREM FOR FUNCTIONS OF OPERATORS AND COMPACT PERTURBATIONS

  • Zhou, Ting Ting;Li, Chun Guang;Zhu, Sen
    • 대한수학회보
    • /
    • 제49권5호
    • /
    • pp.899-910
    • /
    • 2012
  • Let $\mathcal{H}$ be a complex separable infinite dimensional Hilbert space. In this paper, a necessary and sufficient condition is given for an operator T on $\mathcal{H}$ to satisfy that $f(T)$ obeys generalized Weyl's theorem for each function $f$ analytic on some neighborhood of ${\sigma}(T)$. Also we investigate the stability of generalized Weyl's theorem under (small) compact perturbations.

일반화 대칭변환을 변형한 관심 연산자에 의한 사전 정보없는 다중 물체 분할 (Context-free multiple-object segmentation using attention operator based on modified generalized symmetry transform)

  • 구태모;전준형;최흥문
    • 전자공학회논문지C
    • /
    • 제34C권4호
    • /
    • pp.36-44
    • /
    • 1997
  • An efficient context-free multiple-object segmentation using attention operator based on modified generalized symmetry transform is proposed and implemented by modifying a radial basis function network. By using the difference of intensity gradient, instead of te intensity gradient itself, in generalized symmetry tranform so as to make the attention operator to preserve the edges of the objects shape, an efficient context-free multiple-object segementation is proposed in which no a priori shape informtion on the objects is requried. The attention operator is implemented by using a modified radial basis function network which can reflect symmetry, and by using te edge pyramid of the input image, both of the local and the global symmetry of the objects are reflected simultaneously to make the multiple-object with different sizes be segmented with a singel fixed-size $n\timesm$ can be done with O(n) complexity. The simulaton results show that the proposed algorithm can efficiently be used in context-free multiple-object segmentation even for the low contrast IR images as well as for the images from the camera.

  • PDF

The G-Drazin Inverse of an Operator Matrix over Banach Spaces

  • Farzaneh Tayebi;Nahid Ashrafi;Rahman Bahmani;Marjan Sheibani Abdolyousefi
    • Kyungpook Mathematical Journal
    • /
    • 제64권2호
    • /
    • pp.205-218
    • /
    • 2024
  • Let 𝒜 be a Banach algebra. An element a ∈ 𝒜 has generalized Drazin inverse if there exists b ∈ 𝒜 such that b = bab, ab = ba, a - a2b ∈ 𝒜qnil. New additive results for the generalized Drazin inverse of an operator over a Banach space are presented. we extend the main results of a paper of Shakoor, Yang and Ali from 2013 and of Wang, Huang and Chen from 2017. Appling these results to 2×2 operator matrices we also generalize results of a paper of Deng, Cvetković-Ilić and Wei from 2010.