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ON OPTIMALITY OF GENERALIZED OPTIMIZATION

PROBLEMS ASSOCIATED WITH OPERATOR AND

EXISTENCE OF (Tη; ξθ)-INVEX FUNCTIONS

Prasanta Kumar Das

Abstract. The main purpose of this paper is to introduce a pair new

class of primal and dual problem associated with an operator. We prove
the sufficient optimality theorem, weak duality theorem and strong duality

theorem for these problems. The equivalence between the generalized op-

timization problems and the generalized variational inequality problems is
studied in ordered topological vector space modeled in Hilbert spaces. We

introduce the concept of partial differential associated (PDA)-operator,

PDA- vector function and PDA-antisymmetric function to show the exis-
tence of a new class of function called, (Tη ;ξθ)-invex functions. We discuss

first and second kind of (Tη ;ξθ)-invex functions and establish their exis-

tence theorems in ordered topological vector spaces.

1. Introduction

The notion of invexity was introduced and studied in the optimization by
Hanson [15] in 1981 for a generalized concept of convex function. He utilized the
property invexity of the function in the place of convexity to analyze optimality
of the optimization problems.

Later Kaul and Kaur [16] called these functions η-convex and defined η-
pseudoconvex and η-quasiconvex functions. As an extension, the concept of ρ-
(η, θ)-invexity was introduced by Zalmai [19] which is generalization of invextiy.

The class of convex functions have also been further extended to the class of
B-invex functions, introduced by Bector et al. [1, 2]. A class of pseudo B-invex
and quasi B-invex functions are also studied by Bector et al. [2], which are
generalization of pseudoinvex and quasiinvex functions respectively. Bector et
al. [2] have introduced the sufficient optimality conditions and duality results
for a nonlinear programming problem using B-invex functions. For reference
we refer Behera et al. [4, 5], Ben and Mond [6] to name only a few.

Received October 1, 2015; Accepted January 16, 2017.

2010 Mathematics Subject Classification. 52A41, 90C25, 26A51, 65Kxx.
Key words and phrases. Generalized optimization problems, sufficient optimality theo-

rem, weak duality theorem, strong duality theorem, (Tη ;ξθ)-invexity of first and second kind,

(PDA)-operator, PDA-vector function and PDA-antisymmetric function.

c©2017 The Youngnam Mathematical Society
(pISSN 1226-6973, eISSN 2287-2833)

83



84 P. K. DAS

In 2006, Behera and Das [3] have introduced T -η-invex function as an invex
function associated with respect to an operator T to generalize the invexity
concept of a smooth function, introduced by Hanson [15] and nonsmooth func-
tion, introduced by Craven [11]. Later the properties of T -η-invex functions
and η-invex sets are studied by Behera and Das [14].

For our need, we recall the definition of T -η-invex function and η-invex set.
Let X be topological vector space and K be a nonempty subset of X. Let
(Y, P ) be an ordered topological vector space equipped with the closed convex
pointed cone such that intP 6= ∅. Let L(X,Y ) be the set of linear continuous
functionals from X to Y . Let the pair 〈f, x〉 denote the value of f ∈ L(X,Y )
at x ∈ X. Let T : K → L(X,Y ) be any map.

Definition 1. [15] Let K be any subset of the vector space X. Let η : K×K →
X be a continuous vector valued mapping. The set K is said to be η-invex if
for all x, u ∈ K and for all t ∈ (0, 1), we have u+ tη(x, u) ∈ K, by the rule

u+ tη(x, u) =

 u, if t = 0;
z ∈ I(x, u), if 0 < t < 1;
x, if t = 1,

where I(x, y) ⊂ intK is the path joining x and y.

Definition 2. [3] A mapping F : K → Y is T -η-invex on K ⊂ X if there exists
a vector valued mapping η : K ×K → X such that

F (x)− F (x′)− 〈T (x′), η(x, x′)〉 /∈ −intP for all x, x′ ∈ K.

Definition 3. [3] The mapping T : K ⊂ X → L(X,Y ) is said to be η-monotone
if there exists a vector function η : K ×K → X such that

〈T (x′), η(x, x′)〉+ 〈T (x), η(x′, x)〉 /∈ intP

for all x, x′ ∈ K. For strictly η-monotone case,

〈T (x′), η(x, x′)〉+ 〈T (x), η(x′, x)〉 /∈ −int P ∪ int P

for x = x′ only.

The concept of invexity is broadly used in the theory of variational inequality
problems and complementarity problems. To study the generalized complemen-
tarities directly from its related generalized variational inequalities, condition
C0 (introduced by Behera and Das [3]) has played an important role. In fact,
the concept of η-invex cone in both positive and negative orthants (i.e., sides)
is induced by the concept of condition C0 defined as follows.

Definition 4. [3] Let X be a topological vector space. Let K ⊂ X with
intK 6= ∅. A vector function η : K ×K → X is said to satisfy condition C0 if
the following hold:

(a) z = u+ η(x, u) ∈ K and η(z, u) + η(u, z) = 0 for all x, u ∈ K,
(b) η(u+ tη(x, u), u) + tη(x, u) = 0 for all x, u ∈ K and t ∈ (0, 1).
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Various phenomena which occur in physical and economical sciences are
mathematically formulated as nonsmooth variational inequalities or as opti-
mization problems, where some nonsmooth constraints have to be taken into
account. The nonsmooth mixed variational inequalities include classical varia-
tional inequalities as well as the nonsmooth convex optimization problems.

To make the paper self contained, we recall the concept of subdifferential of a
nonsmooth convex function in sense of Clarke [9]. Let F : K → R be Lipschitz
(not necessarily differentiable) near a given point x ∈ K and let v be any point
in X. The generalized directional derivative of F at x in the direction v, i.e.,
F ◦(x; v) is defined by

F ◦(x; v) = lim sup
y → x, t ↓ 0

F (y + tv)− F (y)

t
.

The generalized gradient (or subdifferential) of F at x, denoted ∂F (x) which is
the subset of X∗ is given by

∂F (x) = {ξ ∈ X∗ : F ◦(x; v) ≥ 〈ξ, v〉} .

Through out this paper, X is considered as topological vector space and K is
a nonempty subset of X. Let H be a Hilbert space. Let F : X → H be any
mapping. Let Y = (Ran(F ), τ) where Ran(F ) be the range of F and τ be the
induced topology of Ran(F ) obtained by F . Let (Y, P ) be a topological vector
space of dimension n in an Hilbert space H equipped with the closed convex
pointed cone with nonempty interior, i.e., intP 6= ∅. Let F : X → Y be a
mapping defined by

F (x) = (F1(x), F2(x), · · · , Fn(x))

where Fi : K → R are not necessarily smooth but Lipschitz continuous for each
x ∈ X. Let T : K → L(X,Y ) be any map and ξ : K → ∂F (K) be the operator
functional defined by

ξ(x) ∈ ∂F (x)

for each x ∈ K if and only if

(ξ1(x), ξ2(x), · · · , ξn(x)) ∈
n∏
i=1

∂Fi(x).

2. Optimality of Generalized OP and its Equivalence Theorem with
GVIP

In 2006, Matrino and Xu [17] have defined the variational inequality problem
(VIP) in Hilbert space H as follows. The problem is to :

find z0 ∈M ⊂ H such that

〈A(z0), z − z0〉 ≥ γ 〈ξ(z0), z − z0〉 for all z ∈M. (VIP:T,F )
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They used this problem to show the optimality condition for the minimization
problem

min
z∈M

1

2
〈A(z), z〉 − F (z),

in a Hilbert space H, where A : M → L(H), ξ : H→ L(H) and F is the potential
function for γξ (i.e., F ′(z) = γξ(z) for all z ∈M ⊂ H).

For our need, we make the following definition.

Definition 5. Let K be any subset of the vector space X such that 0 ∈ K.
Let η : K ×K → X be continuous vector valued mapping. Let K be η-invex.
The set Kerη(K) called as Kernel of K with respect to η is defined by

Kerη(K) = {u ∈ K : η(u+ tη(z, u), u) + tη(z, u) = 0, t ∈ [0, 1], z ∈ X} .

We consider the primal problem (P) which is a minimization problem defined
by

inf
x∈Kerη(K)

1

2
〈T (x), η(z, x)〉 − F (x), (P)

subject to:

z ∈ K, and T (x) ∈ K	 = {f ∈ L(X,Y ) : 〈f, v〉 /∈ intP, v ∈ X}
where X is a topological vector space, T : K → L(X,Y ), and ξ : K → L(X,Y )
and F is the potential function for γξ (i.e., F ′(x) = γξ(x) for all x ∈ K).

The corresponding dual problem of (P) is the maximization problem (D)
defined by

sup
y∈Kerη(K)

1

2
〈T (y), η(z, y)〉 − F (y), (D)

subject to:

z ∈ K, and T (y) ∈ K⊕ = {f ∈ L(X,Y ) : 〈f, v〉 /∈ −intP, v ∈ X} .
In this section, we consider the generalized F -variational inequality problem

(GVIP:T,F ) is to:
find y ∈ K ⊂ X such that

〈T (y), η(x, y)〉 ≥ γ 〈ξ(y), η(x, y)〉 for all x ∈ K. (GVIP:T,F )

Remark 1. The problem (GVIP:T,F ) coincides with (VIP:T,F ) if η(z, x) is
replaced by x in the minimization problem.

For our need, we consider the following condition.

Condition 1 (PPC). For the primal problem, the condition is

〈T (x), η(z, x)〉+ 〈∇F (x), η(z, x)〉 /∈ −int P ∪ int P(1a)

〈∇F (x), η(p, x)〉 /∈ −int P ∪ int P(1b)

for all p ∈ K and z ∈ I(x, y).

For simplicity, we use the following notations [3].
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Note 1. For simplicity, we use the following terminologies:

(a) y /∈ −intP if and only if y ∈ P if and only if y ≥P 0;
(b) y ∈ intP if and only if y >P 0;
(c) y /∈ intP if and only if y ∈ −P if and only if y ≤P 0;
(d) y ∈ −intP if and only if y <P 0;
(e) y − z /∈ −intP if and only if y − z ≥P 0 ( i.e., y ≥P z);
(f) y − z /∈ intP if and only if y − z ≤P 0 (i.e., y ≤P z);
(g) y − z /∈ (−intP

⋃
intP ) if and only if if y − z ∈ (−P

⋂
P ) if and only

if y − z =P 0, (i.e., y =P z).

We also use the following terminologies as and when required:

(A) y − z /∈ −P and z /∈ −intP imply y /∈ −intP ;
(B) y − z /∈ −intP and z /∈ −intP imply y /∈ −intP ;
(C) y − z /∈ −P and y ∈ −intP imply z ∈ −intP ;
(D) y − z /∈ −intP and y /∈ −intP imply z /∈ −intP ;
(E) y − z ∈ −intP and z ∈ −intP imply y ∈ −intP ;
(F ) y /∈ −intP if and only if −y /∈ intP ;
(G) y /∈ −intP and z /∈ −intP imply y + z /∈ −intP .

Lemma 2.1. Let K ⊂ X and P be a closed convex pointed cone in Y . Let
K be a η-invex set. Let T be η-monotone on Kerη(K). Let x ∈ Kerη(K) be a
feasible solution of (P) and y ∈ Kerη(K) be a feasible solution of (D). Then

(a) 〈T (y), η(z, y)〉 − 〈T (y), η(x, y)〉 /∈ int P ,
(b) 〈T (x), η(z, x)〉+ 〈T (x), η(y, x)〉 /∈ int P

for all z ∈ I(x, y) the invex path joining x, y ∈ Kerη(K).

Proof. T is η-monotone at y ∈ Kerη(K), i.e.,

〈T (y), η(x, y)〉+ 〈T (x), η(y, x)〉 ≤P 0

for all x ∈ Kerη(K). We claim that

(a) 〈T (y), η(z, y)〉 − 〈T (y), η(x, y)〉 /∈ int P ,
(b) 〈T (x), η(z, x)〉+ 〈T (x), η(y, x)〉 /∈ int P

for all z ∈ I(x, y), x, y ∈ Kerη(K). By the condition of the dual problem D, we
get T (y) ∈ K⊕, i.e.,

〈T (y), η(x, y)〉 /∈ −int P

for all x ∈ Kerη(K), implying

〈T (x), η(y, x)〉 /∈ int P

for all x, y ∈ Kerη(K). By definition of the set Kerη(K), η satisfies condition
C0 at y. Since z ∈ I(x, y), we have z = y + tη(x, y) for x, y ∈ Kerη(K) and
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t ∈ (0, 1). Now Replacing z by z = y + tη(x, y) in the L.H.S. of (a), we get

〈T (y), η(z, y)〉 − 〈T (y), η(x, y)〉 =P 〈T (y), η(y + tη(x, y), y)〉 − 〈T (y), η(x, y)〉
=P −t 〈T (y), η(x, y)〉 − 〈T (y), η(x, y)〉
=P −(1 + t) 〈T (y), η(x, y)〉
≤P 0

for x, y ∈ Kerη(K) and t ∈ (0, 1). This proves (a). By the condition of the dual
problem P, we get T (x) ∈ K	, i.e.,

〈T (x), η(y, x)〉 /∈ int P

for all y ∈ Kerη(K). Replacing z by z = x + λη(y, x) in the L.H.S. of (b), we
get

〈T (x), η(z, x)〉+ 〈T (x), η(y, x)〉 = 〈T (x), η(x+ λη(y, x), x)〉+ 〈T (x), η(y, x)〉
=P −λ 〈T (x), η(y, x)〉+ 〈T (x), η(y, x)〉
=P (1− λ) 〈T (x), η(y, x)〉
≤P 0

for x, y ∈ Kerη(K) and λ ∈ (0, 1). This proves (b). This completes the proof. �

In the following theorem, we establish the sufficient optimality of the (Primal)
problem.

Theorem 2.2 (Sufficient Optimality Theorem). Let K ⊂ X and P be a
closed convex pointed cone in Y . Let K be a η-invex set. Let T be η-monotone
on Kerη(K). Let F be smooth on Kerη(K). Let y ∈ Kerη(K) be a feasible
solution of (P) at which (PPC) conditions are satisfied. Then y is an optimal
solution for the problem (P).

Proof. Since y ∈ Kerη(K) is the feasible solution of (P), T (y) ∈ K⊕, implying

〈T (y), η(x, y)〉 /∈ −int P

for all x ∈ K. By (PPC) conditions,

〈∇F (y), η(x, y)〉 /∈ int P

for all x ∈ K, implying

F (x)− F (y) /∈ int P
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for all x ∈ K as K is η-invex. Using condition C0 of η, we get

1

2
〈T (x), η(z, x)〉 − F (x) =P

1

2
〈T (x), η(x+ λη(y, x), x)〉 − F (x)

=P −λ
2
〈T (x), η(y, x)〉 − F (y)

≥P −1

2
〈T (x), η(y, x)〉 − F (y)

≥P
1

2
〈T (y), η(x, y)〉 − F (y)

≥P
1

2
〈T (y), η(z, y)〉 − F (y)

for all x ∈ Kerη(K), z ∈ I(x, y), and λ ∈ (0, 1), i.e.,

inf
x∈Kerη(K)

1

2
〈T (x), η(z, x)〉 − F (x) ≥P sup

y∈Kerη(K)

1

2
〈T (y), η(z, y)〉 − F (y),

for all z ∈ I(x, y). Hence y is an optimal solution for the problem (P). This
completes the proof of the theorem. �

The following theorem establishes the existence of weak duality theorem un-
der certain conditions.

Theorem 2.3 (Weak Duality Theorem). Let K ⊂ X and P be a closed
convex pointed cone in Y . Let K be η-invex set. Let x ∈ Kerη(K) be feasible
solution of (P) and y ∈ Kerη(K) be a feasible solution of (D). Let F be smooth
on K and T -η-invex at y ∈ Kerη(K). Assume that

〈T (x), η(z, x)〉+ 〈T (x), η(y, x)〉 =P 0

for all z ∈ I(x, y). Then[
1

2
〈T (x), η(z, x)〉 − F (x)

]
−
[

1

2
〈T (y), η(z, y)〉 − F (y)

]
/∈ −int P.

Proof . Since F is T -η-invex on Kerη(K), then by Theorem 2.13 [3], T is η-
monotone on Kerη(K). Since all the conditions of Lemma 2.1 are satisfied, we
have

(a) 〈T (y), η(z, y)〉 − 〈T (y), η(x, y)〉 /∈ int P ,
(b) 〈T (x), η(z, x)〉+ 〈T (x), η(y, x)〉 /∈ int P

for all z ∈ I(x, y). Since y ∈ Kerη(K) is the feasible solution of (D), we have

〈∇F (y), η(x, y)〉 /∈ int P

for all x ∈ K, implying

F (x)− F (y) /∈ int P
for all x ∈ K as K is η-invex. Taking

〈T (x), η(z, x)〉+ 〈T (x), η(y, x)〉 =P 0
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for all z ∈ I(x, y), we get

1

2
〈T (y), η(z, y)〉+ F (x) ≤P

1

2
〈T (y), η(x, y)〉+ F (x)

≤P −1

2
〈T (x), η(y, x)〉+ F (y)

=P
1

2
〈T (x), η(z, x)〉+ F (y),

implying
1

2
〈T (y), η(z, y)〉 − F (y) ≤P

1

2
〈T (x), η(z, x)〉 − F (x)

for all z ∈ I(x, y). Thus[
1

2
〈T (x), η(z, x)〉 − F (x)

]
−
[

1

2
〈T (y), η(z, y)〉 − F (y)

]
/∈ −int P

for all z ∈ I(x, y). This completes the proof of the theorem. �

Theorem 2.4 (Strong Duality Theorem). Let F , T and η satisfy all the
condition of Weak Duality Theorem 2.3. Let F be smooth and T -η-invex on
Kerη(K). Let x∗ ∈ Kerη(K) be the optimal solution of (P), then x∗ ∈ Kerη(K)
is the optimal solution of (D). The optimal solution x∗ is unique if T is strictly
η-monotone on K.

Proof. Since x∗ ∈ Kerη(K) is the optimal solution of (P), we have

inf
x∈Kerη(K)

[
1

2
〈T (x), η(z, x)〉 − F (x)

]
=P

1

2
〈T (x∗), η(z, x∗)〉 − F (x∗)

for all z ∈ I(x∗, y∗), implying T (x∗) ∈ K	, i.e.,

〈T (x∗), η(z, x∗)〉 /∈ int P

for all z ∈ K. Replacing z by x∗ + tη(x, x∗), t ∈ (0, 1) in the above equation
and applying condition C0, we get

〈T (x∗), η(z, x∗)〉 /∈ −int P

for all z ∈ K, implying

〈T (x∗), η(x, x∗)〉 /∈ −int P ∪ int P

for all x ∈ K. Hence T (x∗) ∈ K⊕ which is a condition of (D). By Weak Duality
Theorem 2.3, x∗ ∈ Kerη(K) is the optimal solution of (D), i.e.,

sup
y∈Kerη(K)

[
1

2
〈T (y), η(z, y)〉 − F (y)

]
=P

1

2
〈T (x∗), η(z, x∗)〉 − F (x∗)

for all z ∈ K. Next to prove x∗ is unique. If not, let y∗ be another optimal
solution of (D). Since F is T -η-invex on Kerη(K), we have

〈T (y), η(x, y)〉+ 〈T (x), η(y, x)〉 ≤P 0
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for x, y ∈ Kerη(K). By strictly monotonicity of T , the inequality holds for
x∗ 6= y∗ and equality holds for x∗ = y∗, i.e.,

〈T (y∗), η(x∗, y∗)〉+ 〈T (x∗), η(y∗, x∗)〉 =P 0,

implying x∗ = y∗. Hence the optimal solution of (P) is unique. This completes
the proof of the theorem. �

The following theorem establishes the existence of the result obtained from
the Weak duality Theorem 2.3 for the problems (P) and (D) is equivalent to
find the solution of the problem (GVIP:T,F ) under certain conditions.

Theorem 2.5. Let F , T and η satisfy all the condition of Weak Duality Theo-
rem 2.3. Let F be smooth on Kerη(K). Let x ∈ Kerη(K) be the optimal solution
of (P) and y ∈ Kerη(K) be the optimal solution of (D), then y solves the prob-
lem (GVIP:T,F ) where ξ(y) = ∇F (y), the Hadamard differential of F at y and
γ = 2.

Proof . Since y ∈ Kerη(K), η satisfies condition C0 at y. By Weak Duality
Theorem 2.3, we have

1

2
〈T (x), η(z, x)〉 − F (x) ≥ 1

2
〈T (y), η(z, y)〉 − F (y)

for all z ∈ I(x, y), x ∈ Kerη(K). For λ ∈ [0, 1], y + λη(x, y) ∈ Kerη(K) for all
x ∈ Kerη(K). Replacing z by y + λη(x, y) and using condition C0, we get

1

2
〈T (x),−(1 + λ)η(x, y)〉 − F (x) ≥ 1

2
〈T (y),−λη(x, y)〉 − F (y),

i.e.,

−1 + λ

2
〈T (x), η(x, y)〉+

λ

2
〈T (y), η(x, y)〉 ≥ F (x)− F (y),

for all x ∈ K, y ∈ Kerη(K) and λ ∈ [0, 1]. At λ = 1, we get

−〈T (x), η(x, y)〉+
1

2
〈T (y), η(x, y)〉 ≥ F (x)− F (y),

for all x ∈ K and y ∈ Kerη(K). Again replacing x by y + tη(x, y) and using
condition C0, we get

t 〈T (y + tη(x, y)), η(x, y)〉 − t

2
〈T (y), η(x, y)〉 ≥ F (y + tη(x, y))− F (y),

for all x ∈ K and y ∈ Kerη(K). Dividing both sides by t and taking limit as
t→ 0, we get

〈T (y), η(x, y)〉 − 1

2
〈T (y), η(x, y)〉 ≥ 〈∇F (y), η(x, y)〉 ,

implying,

〈T (y), η(x, y)〉 ≥ 2 〈∇F (y), η(x, y)〉
= 〈γξ(y), η(x, y)〉
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for all x ∈ K and y ∈ Kerη(K) where ξ(y) = ∇F (y), i.e., γ = 2. This completes
the proof of the theorem. �

3. PDA-Operator and its Example

We introduce the concept of partial differential associated (PDA)-operator,
PDA-vector function and PDA-antisymmetric function as follows.

3.1. Definition and Properties

We introduce the new operator D, called PDA-operator which is a symmetri-
cal partial differential operator. PDA-operator induces a weakly antisymmetric
function, called PDA-antisymmetric function associated with a function ϕ. For
our need, we use the following notations.

Definition 6. Let f : R2 → R be a scalar function (not necessarily smooth)
such that fxy = fyx. Let Pf : R2 → R2 be a vector valued mapping defined by

Pf (x, y) = [f(x, y), f(y, x)].

Let ϕ : R→ R be a real valued function. The PDA-operator

Dϕyx : dom(Pf )→ R

is defined by

Dϕyx(Pf (x, y)) = Dϕyx · Pf (x, y).

Thus

Dϕyx(Pf (x, y)) =
[
ϕ(y)∂2xy, ϕ(x)∂2yx

]
· [f(x, y), f(y, x)]

= ϕ(y)∂2xyf(x, y) + ϕ(x)∂2yxf(y, x) (2)

for x, y ∈ R. Interchanging x and y in the above equation, we get

Dϕxy(Pf (y, x)) = ϕ(x)∂2yxf(y, x) + ϕ(y)∂2xyf(x, y)

= ϕ(y)∂2xyf(x, y) + ϕ(x)∂2yxf(y, x)

= Dϕyx(Pf (x, y))

for all x, y ∈ R. Thus

Dϕxy(Pf (y, x)) = Dϕyx(Pf (x, y)) = ϕ(y)∂2xyf(x, y) + ϕ(x)∂2yxf(y, x)

for all x, y ∈ R. Sine fxy = fyx, i.e., ∂2xyf = ∂2yxf , we get

Dϕyx(Pf (x, y)) = ϕ(y)∂2yxf(x, y) + ϕ(x)∂2yxf(y, x)

for all x, y, implying

Dϕyx = [ϕ(y), ϕ(x)] ∂2yx
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and

Dϕxy(Pf (y, x)) = Dϕyx(Pf (x, y))

= ϕ(y)∂2xyf(x, y) + ϕ(x)∂2yxf(y, x)

= ϕ(y)∂2yxf(x, y) + ϕ(x)∂2xyf(y, x)

= Dϕyx(Pf (y, x)) (3)

for all x, y, implying Dϕxy(Pf (y, x)) and Dϕyx(Pf (y, x)) are of two functions hav-
ing asymptotes are symmetrical. Thus

Dϕyx �Pf Dϕxy;

where �Pf denotes “asymptotically symmetrical” with respect to the function

Pf (x, y) = [f(x, y), f(y, x)]

and the PDA-operator Dϕyx is said to be weakly symmetric with respect to the
vector function

Pf (x, y) = [f(x, y), f(y, x)] if f is continuous.

3.1.1. Property of PDA-Operator. The PDA-operator Dϕyx satisfies

f ≡ g ⇒ Dϕyx(Pf ) = Dϕyx(Pg),

i.e., for all x, y ∈ R,

(i) if f ≡ g, then Dϕyx(Pf ) = Dϕyx(Pg),
(ii) if Dϕyx(Pf ) = Dϕyx(Pg), then f 6≡ g.

Definition 7 (PDA-Vector Function). Let f : R2 → R be a real valued
function. The vector function Pf : R2 → R2 defined by

Pf (x, y) = [f(x, y), f(y, x)]

is said to be PDA-vector function with respect to f(x, y) associated with ϕ :
R→ R, if

(i) f(x, y) is a weakly antisymmetric function (or weakly symmetric func-
tion) with respect to the PDA-operator Dyx

(ii) for all x, y, we have

Dϕyx(Pf (x, y)) = 0,

i.e.,

ϕ(y)∂2yxf(x, y) + ϕ(x)∂2yxf(y, x) = 0.

For simplicity, we call ϕ as weighted function for the equilibrium and f as
PDA-antisymmetric function.

From the definition of PDA-antisymmetric function, we get

Dϕyx(Pf (x, y)) = 0.
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The above expression can be written as,

1

ϕ(x)
∂2yxf(x, y) +

1

ϕ(y)
∂2yxf(y, x) = 0,

equivalently,
1

ϕ(x)
fxy(x, y) +

1

ϕ(y)
fxy(y, x) = 0

or
1

ϕ(x)
fyx(x, y) +

1

ϕ(y)
fyx(y, x) = 0.

We prove the existence theorem for PDA-vector function relative to f(x, y) as
follows.

Theorem 3.1. Let ϕ : R→ R and p : R→ R be any two continuous functions.
Let the PDA-antisymmetric function f : R2 → R be a continuous function
defined by

fyx(x, y) = ϕ(x)[p(x)− p(y)]

for all x, y ∈ R. Then the function Pf : R2 → R2 defined by

Pf (x, y) = [f(x, y), f(y, x)]

is a PDA-vector function with respect to the PDA-operator

Dϕyx =
[
ϕ(y)∂2xy, ϕ(x)∂2yx

]
associated with the mapping ϕ : R→ R and relative to f .

Proof . To prove the vector function Pf : R2 → R2 defined by

Pf (x, y) = [f(x, y), f(y, x)]

is a PDA-vector function with respect to the PDA-operator Dϕyx, we show

1

ϕ(x)
∂2yxf(x, y) +

1

ϕ(y)
∂2yxf(y, x) = 0,

i.e.,
1

ϕ(x)
fxy(x, y) +

1

ϕ(y)
fxy(y, x) = 0.

Since f : R2 → R defined by

fyx(x, y) = ϕ(x) [ p(x)− p(y)]

for all x, y is continuous; interchanging x and y in the above expression, we get

fxy(y, x) = ϕ(y) [ p(y)− p(x)] ,

i.e.,

fyx(y, x) = ϕ(y) [ p(y)− p(x)]
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for all x, y. Hence

1

ϕ(x)
fyx(x, y) +

1

ϕ(y)
fyx(y, x) =

1

ϕ(x)
ϕ(x) [ p(x)− p(y)]

+
1

ϕ(y)
ϕ(y) [ p(y)− p(x)]

= p(x)− p(y) + p(y)− p(x)

= 0

for all x, y, showing Pf (x, y) is PDA-vector function. This completes the proof
of the theorem. �

The following example illustrates the existence of PDA-vector function Pf (x, y)
with respect to the PDA-operator Dϕyx associated with ϕ relative to PDA-
antisymmetric function f(x, y).

Example 1. Let the mappings f : R2 → R and ϕ : R→ R be defined by

f(x, y) =
x3

3
e−y − [1 + (1 + x)2]ye−x,

and

ϕ(x) = x2

respectively. We prove Pf (x, y) is PDA-vector function with respect to the
PDA-operator

Dϕyx =
[
ϕ(y)∂2xy, ϕ(x)∂2yx

]
associated with the mapping ϕ(x), and relative to PDA-antisymmetric function
f(x, y), that is,

Dϕ
yx(Pf (x, y)) = 0,

i.e.,

ϕ(y)fyx(x, y) + ϕ(x)fyx(y, x) = 0,

i.e.,

y2fyx(x, y) + x2fyx(y, x) = 0.

We have

fyx(x, y) =
∂2

∂x∂y
f(x, y) =

∂2

∂x∂y

(
x3

3
e−y − [1 + (1 + x)2]ye−x

)
= x2(e−x − e−y).

Now fxy(y, x) = fyx(y, x), since

fyx(y, x) =
∂2

∂x∂y
f(y, x) =

∂2

∂x∂y

(
y3

3
e−x − [1 + (1 + y)2]xe−y

)
= y2(e−y − e−x)
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and

fxy(y, x) =
∂2

∂y∂x
f(y, x) =

∂2

∂y∂x

(
y3

3
e−x − [1 + (1 + y)2]xe−y

)
= y2(e−y − e−x).

Hence

Dϕ
yx(Pf (x, y)) = y2fyx(x, y) + x2fyx(y, x)

= y2x2(e−x − e−y) + x2y2(e−y − e−x)

= x2y2(e−x − e−y + e−y − e−x)

= 0

for all x, y. Hence, Pf (x, y) is PDA-vector function.

The PDA-antisymmetric function

f(x, y) =
x3

3
e−y − [1 + (1 + x)2]ye−x

given in Example 1 is used in Example 2 to show the existence of (Tη; ξθ)-invex
function of both first kind and second kind.

Theorem 3.2. Let W = K ×K be a contractible domain in R2 where K ⊂ R.
Let θ : W → R be a continuous antisymmetric function, i.e., θ(x, y)+θ(y, x) = 0
for all x, y ∈ K. Let ϕ : K → R and f : W → R be two functions given by the
relation,

fyx(x, y) = ϕ(x)θ(x, y)

for all x, y ∈ K. Then Pf (x, y) is a PDA-vector vector function with respect
to the PDA-operator Dϕyx associated with ϕ and relative to PDA-antisymmetric
function f .

Furthermore if θ : R2 → R is defined by

θ(x, y) = p(x)− p(y)

where p is a linear skew projective map, then f(x, y) satisfies condition C0

weakly with respect to the operator 1
ϕ(x)∂

2
yx.

Proof . Since θ : W → R is antisymmetric, we get

θ(x, y) + θ(y, x) = 0

and

Dϕyx(Pf (x, y)) = ϕ(y)∂2xyf(x, y) + ϕ(x)∂2yxf(y, x)

= ϕ(y)∂2yxf(x, y) + ϕ(x)∂2yxf(y, x)

= ϕ(y)fxy(x, y) + ϕ(x)fyx(y, x)

= ϕ(y)ϕ(x)θ(x, y) + ϕ(x)ϕ(y)θ(y, x)

= ϕ(x)ϕ(y) [θ(x, y) + θ(y, x)]

= 0,
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for all x, y ∈ K, so Pf (x, y) is PDA-vector function with respect to the PDA-
operatorDϕyx associated with the mapping ϕ, and relative to PDA-antisymmetric
function f(x, y).

Now, we have

fyx(x, y) = ϕ(x)θ(x, y),

implying
1

ϕ(x)
fyx(x, y) = θ(x, y),

i.e.,
1

ϕ(x)
∂2yxf(x, y) = θ(x, y)

for all x, y ∈ R. Since p is a linear skew projective, (i.e., p2 = −p) and

θ(x, y) = p(x)− p(y),

θ satisfies condition C0. Hence f(x, y) satisfies condition C0 weakly with respect
to the operator 1

ϕ(x)∂
2
yx. This completes the proof of the theorem. �

4. (Tη; ξθ)-Invex Function

We introduce the the concept of (Tη; ξθ)-invex functions of two kinds in or-
dered topological vector space Y where X and Y are defined in previous section.

Definition 8. The mapping F : K → Y is said to be (Tη; ξθ)-invex function
of first kind on K if there exists a vector function θ : K×K → X such that for
all x, x′ ∈ K,

F (x)− F (x′)− 〈T (x′), η(x, x′)〉 − 〈ξ(x′), θ(x, x′)〉 ≥P 0.

Definition 9. The mapping F : K → Y is said to be (Tη; ξθ)-invex function
of second kind on K if there exists a vector function θ : K ×K → X such that
for all x, x′ ∈ K,

F (x)− F (x′)− 〈T (x′), η(x, x′)〉+ 〈ξ(x′), θ(x, x′)〉 ≥P 0.

Remark 2. (1) Let Y = R. Let for some x′ ∈ K, ξ(x′) ≡ 0 then both the
(Tη; ξθ)-invexity of first kind and second kind of F coincide with the
definition of T -η-invexity function of F [3].

(2) Let X be a Hilbert space, Y = R, and ξ(x′) = ξ ∈ ∂F (x′), the sub-
differential of F at x′ then the definition of (Tη; ξθ)-invex function of
first kind coincides with the definition of θ-invex function defined in
nonsmooth analysis.

(3) If ξ 6= T and for all x, x′ ∈ K,

〈T (x′), η(x, x′)〉 ≥P 0

then the definition of (Tη; ξθ)-invex function of first kind reduces to
nonsmooth θ-invex function [11].
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Remark 3. Let for each x′ ∈ K, 〈ξ(x′), θ(x, x′)〉 ≥P 0 for all x ∈ K, then for
any map F : K → Y , we have

F (x)− F (x′)− 〈T (x′), η(x, x′)〉+ 〈ξ(x′), θ(x, x′)〉
≥P F (x)− F (x′)− 〈T (x′), η(x, x′)〉 − 〈ξ(x′), θ(x, x′)〉

for all x ∈ K. If for each x′ ∈ K,

F (x)− F (x′)− 〈T (x′), η(x, x′)〉 − 〈ξ(x′), θ(x, x′)〉 ≥P 0,

then

F (x)− F (x′)− 〈T (x′), η(x, x′)〉+ 〈ξ(x′), θ(x, x′)〉 ≥P 0

for all x ∈ K which establishes the relation between (Tη; ξθ)-invex function of
first kind and second kind.

For each x ∈ K, let K+
θ (x), K−θ (x) and K0

θ (x) be the subsets of K defined
by

K+
θ (x) = {x′ ∈ K : 〈ξ(x′), θ(x, x′)〉 ≥P 0},

K−θ (x) = {x′ ∈ K : 〈ξ(x′), θ(x, x′)〉 ≤P 0}
and

K0
θ (x) = {x′ ∈ K : 〈ξ(x′), θ(x, x′)〉 =P 0},

then

K+
θ (x)

⋃
K−θ (x) = K

and

K+
θ (x)

⋂
K−θ (x) = K0

θ (x).

Proposition 4.1. Let F : K ⊂ X → Y be a nonsooth Lipschitz continuous
map on K. Let T : K → L(X,Y ) and ξ : K → ∂F (K) be two functionals. Let
η : K ×K → X and θ : K ×K → X be any vector valued functions. Then the
following are true:

(1) If for each x ∈ K, F is (Tη; ξθ)-invex function of first kind at x′ ∈
K+
θ (x), then F is (Tη; ξθ)-invex function of second kind and F is T -η-

invex at x′ ∈ K+
θ (x), but not conversely, that is, if F is (Tη; ξθ)-invex

function of second kind at x′ ∈ K+
θ (x), then F may or may not be

(Tη; ξθ)-invex function of first kind on K+
θ (x) or F is T -η-invex at

x′ ∈ K+
θ (x).

(2) If for each x ∈ K, F is (Tη; ξθ)-invex function of second kind at x′ ∈
K−θ (x), then F is T -η-invex at x′ ∈ K−θ (x), and F is (Tη; ξθ)-invex

function of first kind at x′ ∈ K−θ (x), but not conversely.
(3) Let x ∈ K. Then for all x′ ∈ K0

θ (x), (Tη; ξθ)-invexity function of first
kind, second kind and T -η-invexity of F coincide with each other.

Proof . Case (1): Let F be (Tη; ξθ)-invex function of first kind at x′ ∈ K+
θ (x).

Then, at x′ ∈ K+
θ (x), we have

〈ξ(x′), θ(x, x′)〉 ≥P 0,
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and
F (x)− F (x′)− 〈T (x′), η(x, x′)〉 − 〈ξ(x′), θ(x, x′)〉 ≥P 0,

i.e.,
F (x)− F (x′)− 〈T (x′), η(x, x′)〉 ≥P 〈ξ(x′), θ(x, x′)〉 ≥P 0,

implying,
F (x)− F (x′)− 〈T (x′), η(x, x′)〉 ≥P 0

for each x ∈ K, that is, F is T -η-invex at x′ ∈ K+
θ (x). Again adding the above

two inequalities, we obtain

F (x)− F (x′)− 〈T (x′), η(x, x′)〉+ 〈ξ(x′), θ(x, x′)〉 ≥P 0,

that is, F is (Tη; ξθ)-invex function of second kind at x′ ∈ K+
θ (x).

Conversely, for x′ ∈ K+
θ (x), we have

〈ξ(x′), θ(x, x′)〉 ≥P 0

for all x ∈ K. Since F is (Tη; ξθ)-invex function of second kind at x′ ∈ K+
θ (x),

we have

F (x)− F (x′)− 〈T (x′), η(x, x′)〉+ 〈ξ(x′), θ(x, x′)〉 ≥P 0,

i.e.,
F (x)− F (x′)− 〈T (x′), η(x, x′)〉 ≥P −〈ξ(x′), θ(x, x′)〉,

implying

F (x)− F (x′)− 〈T (x′), η(x, x′)〉 − 〈ξ(x′), θ(x, x′)〉 ≥P −2〈ξ(x′), θ(x, x′)〉
for each x ∈ K, this does not confirm about the (Tη; ξθ)-invexity of first kind
or T -η-invexity of F at x′ ∈ K+

θ (x).

Case (2): For x′ ∈ K−θ (x), we have

〈ξ(x′), θ(x, x′)〉 ≤P 0

for all x ∈ K. Since F is (Tη; ξθ)-invex function of second kind at x′ ∈ K−θ (x),
we have

F (x)− F (x′)− 〈T (x′), η(x, x′)〉+ 〈ξ(x′), θ(x, x′)〉 ≥P 0,

i.e.,
F (x)− F (x′)− 〈T (x′), η(x, x′)〉 ≥P −〈ξ(x′), θ(x, x′)〉 ≥P 0,

implying
F (x)− F (x′)− 〈T (x′), η(x, x′)〉 ≥P 0

for each x ∈ K, that is, F is T -η-invex at x′ ∈ K−θ (x), again adding the above
two inequalities, we obtain

F (x)− F (x′)− 〈T (x′), η(x, x′)〉 − 〈ξ(x′), θ(x, x′)〉 ≥P 0,

for each x ∈ K, that is, F is (Tη; ξθ)-invex function of first kind at x′ ∈ K+
θ (x).
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Conversely, let F is (Tη; ξθ)-invex function of first kind at x′ ∈ K−θ (x). Then,

at x′ ∈ K−θ (x), we have

〈ξ(x′), θ(x, x′)〉 ≤P 0,

and

F (x)− F (x′)− 〈T (x′), η(x, x′)〉 − 〈ξ(x′), θ(x, x′)〉 ≥P 0,

i.e.,

F (x)− F (x′)− 〈T (x′), η(x, x′)〉 ≥P 〈ξ(x′), θ(x, x′)〉,
implying

F (x)− F (x′)− 〈T (x′), η(x, x′)〉+ 〈ξ(x′), θ(x, x′)〉 ≥P 2〈ξ(x′), θ(x, x′)〉

for each x ∈ K, this does not confirm about the (Tη; ξθ)-invexity of second kind
or T -η-invexity of F at x′ ∈ K−θ (x).

Case (3): Let

x′ ∈ K0
θ (x) = {x′ ∈ K : x ∈ K+

θ (x)
⋂
K−θ (x)}.

Then

〈ξ(x′), θ(x, x′)〉 =P 0,

for all x ∈ K. If F is T -η-invex at x′ ∈ K0
θ (x), then

F (x)− F (x′)− 〈T (x′), η(x, x′)〉 ≥P 0

for each x ∈ K, which can be written as

F (x)− F (x′)− 〈T (x′), η(x, x′)〉 − 〈ξ(x′), θ(x, x′)〉 ≥P 0,

and also

F (x)− F (x′)− 〈T (x′), η(x, x′)〉+ 〈ξ(x′), θ(x, x′)〉 ≥P 0,

for each x ∈ K. For each x ∈ K, F is both (Tη; ξθ)-invex function of first kind
and second kind at x′ ∈ K0

θ (x). Hence, for all x′ ∈ K0
θ (x), (Tη; ξθ)-invexity

function of first kind, second kind and T -η-invexity of F coincide with each
other. This completes the proof of the proposition. �

The following Example illustrates the existence of (Tη; ξθ)-invex function of
first kind and (Tη; ξθ)-invex function of second kind.

Example 2. Let X = Y = R,

K = {x ∈ [−a, b] : a ≥ 0, b > 0}.

Let F : K → R be a mapping defined by

F (x) = x2e−x

for all x ∈ K. Let f : K ×K → Y be any function defined by

f(x, u) =
x3

3
e−u − [1 + (1 + x)2]ue−x
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for all x, u ∈ K. Let T : K → X∗ and η : K ×K → X be two mapping defined
by

T (x) = −2xe−x,

η(x, u) = x+ u

for all x, u ∈ K such that

〈T (u), η(x, u)〉 = T (u) · η(x, u)− fux(x, u)

Let ξ : K → X∗ and θ : K ×K → X be two mapping defined by

ξ(x) = e−x,

θ(x, u) = x− u

for all x, u ∈ K such that

〈ξ(u), z〉 = ξ(u) · z2

for all z ∈ X. Since

fux(x, u) =
∂2

∂x∂u
f(x, u) =

∂2

∂x∂u

(
x3

3
e−u − [1 + (1 + x)2]ue−x

)
= x2(e−x − e−u)

for all x, u ∈ K, we have

F (x)− F (u) − 〈T (u), η(x, u)〉 − 〈ξ(u), θ(x, u)〉
= x2e−x − u2e−u −

[
(−2ue−u)(x+ u)− fux(x, u)

]
− e−u(x− u)2

= 4x2u2e−u ≥ 0

for all x, u ∈ K, implying F is (Tη; ξθ)-invex function of first kind on K. Again
we have

F (x)− F (u) − 〈T (u), η(x, u)〉+ 〈ξ(u), θ(x, u)〉
= x2e−x − u2e−u − [(−2ue−u)(x+ u)− fux(x, u) + e−u(x− u)2

= 2(x2 + u2)e−u ≥ 0

for all x, u ∈ K, implying F is (Tη; ξθ)-invex function of second kind on K.
Furthermore, since

〈ξ(u), θ(x, u)〉 = ξ(u) · θ2(x, u) = e−u(x− u)2 ≥ 0

for all x, u ∈ K, by Proposition 4.1, case (1), F is T -η-invex on K.
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