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GENERALIZED WEYL’S THEOREM FOR FUNCTIONS OF

OPERATORS AND COMPACT PERTURBATIONS

Ting Ting Zhou, Chun Guang Li, and Sen Zhu

Abstract. Let H be a complex separable infinite dimensional Hilbert
space. In this paper, a necessary and sufficient condition is given for
an operator T on H to satisfy that f(T ) obeys generalized Weyl’s the-
orem for each function f analytic on some neighborhood of σ(T ). Also
we investigate the stability of generalized Weyl’s theorem under (small)
compact perturbations.

1. Introduction

This paper is a continuation of a previous paper of the authors and Feng
[22], where the stability of Weyl’s theorem under analytic functional calculus is
studied. This paper is also inspired by [1, 3, 4], where the stability of property
(w) under some perturbations is studied. The aim of this paper is to study
the stability of generalized Weyl’s theorem under analytic functional calculus
and (small) compact perturbations. Our results provide some concise spectral
characterizations of the stability of generalized Weyl’s theorem under the above
transformations. To proceed, we first introduce some necessary notations and
terminology.

Throughout this paper, H will always denote a complex separable infinite
dimensional Hilbert space. We denote by B(H) the algebra of all bounded
linear operators on H, and by K(H) the ideal of compact operators in B(H).

Let T ∈ B(H). We denote by σ(T ) and σp(T ) the spectrum of T and the
point spectrum of T respectively. Denote by kerT and ranT the kernel of T
and the range of T respectively. T is called a semi-Fredholm operator, if ranT
is closed and either dimkerT or dimkerT ∗ is finite; in this case, indT :=
dimkerT − dim kerT ∗ is called the index of T . In particular, if −∞ < indT <
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∞, then T is called a Fredholm operator. T is called a Weyl operator if it is
Fredholm of index 0. The Wolf spectrum σlre(T ), the essential spectrum σe(T )
and the Weyl spectrum σw(T ) of T are defined as

σlre(T ) := {λ ∈ C : T − λ is not semi-Fredholm},

σe(T ) := {λ ∈ C : T − λ is not Fredholm}

and

σw(T ) := {λ ∈ C : T − λ is not Weyl},

respectively. ρs−F (T ) := C \ σlre(T ) is called the semi-Fredholm domain of T .
We denote

ρ0s−F (T ) := {λ ∈ ρs−F (T ) : ind(T − λ) = 0},

ρ+s−F (T ) := {λ ∈ ρs−F (T ) : ind(T − λ) > 0}

and

ρ−s−F (T ) := {λ ∈ ρs−F (T ) : ind(T − λ) < 0}.

Let T ∈ B(H). If σ is a clopen subset of σ(T ), then there exists an analytic
Cauchy domain Ω such that σ ⊂ Ω and [σ(T ) \ σ] ∩ Ω = ∅. We let E(σ;T )
denote the Riesz idempotent of T corresponding to σ, that is,

E(σ;T ) =
1

2πi

∫

Γ

(λ− T )−1dλ,

where Γ = ∂Ω is positively oriented with respect to Ω. In this case, we denote
H(σ;T ) = ranE(σ;T ). If λ ∈ isoσ(T ), then {λ} is a clopen subset of σ(T ) and
we simply writeH(λ;T ) instead ofH({λ};T ); if, in addition, dimH(λ;T ) < ∞,
then λ is called a normal eigenvalue of T . The set of all normal eigenvalues of
T will be denoted by σ0(T ).

For T ∈ B(H) and a nonnegative integer n, define T[n] to be the restriction
of T to ranT n viewed as a map from ranT n into ranT n. If for some n the
range space ranT n is closed and T[n] is a Fredholm operator, then T is called a
B-Fredholm operator. In this case, from [12, Proposition 2.1], T[m] is Fredholm
and ind(T[m]) = ind(T[n]) for all m ≥ n. This enables us to define the index of
a B-Fredholm operator T as the index of the Fredholm operator T[n], where n
is any nonnegative integer such that ranT n is closed and T[n] is Fredholm. T is
called a B-Weyl operator if it is a B-Fredholm operator of index 0. The B-Weyl

spectrum of T , denoted by σBW (T ), is defined as {λ ∈ C : T−λ is not B-Weyl}.
For details, the reader is referred to [12].

Following Berkani and Koliha [11], we say that generalized Weyl’s theorem
holds for T ∈ B(H), denoted by T ∈ (gW), if there is the equality

σBW (T ) = σ(T ) \ E(T ),

where E(T ) := σp(T ) ∩ isoσ(T ) (here and in what follows, isoσ(T ) denotes
the set of all isolated points of σ(T )). This is a generalization of the classical
Weyl’s theorem.
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Following Coburn [15], we say that Weyl’s theorem holds for T ∈ B(H),
denoted by T ∈ (W), if there is the equality

σw(T ) = σ(T ) \Π00(T ),

where Π00(T ) := {λ ∈ isoσ(T ) : 0 < dimker(T − λ) < ∞}. Operators satisfy-
ing generalized Weyl’s theorem always satisfy Weyl’s theorem (for details, see
[11]).

The study of Weyl’s theorem for bounded linear operators has a long his-
tory. In 1909, Weyl [24] proved that Weyl’s theorem holds for self-adjoint
operators. In 1966, Coburn [15] extended Weyl’s theorem for several class op-
erators including hyponormal operators. Since then, Weyl’s theorem has been
extended to various operators both on Hilbert spaces and Banach spaces. In
2003, Berkani and Koliha [11] generalized the notion of Weyl’s theorem and ini-
tiated the study for generalizedWeyl’s theorem. Berkani [8] proved that normal
operators satisfy generalized Weyl’s theorem. Generalized Weyl’s theorem has
been extended to hyponormal operators [10]. Meanwhile many publications
on Weyl’s theorem and generalized Weyl’s theorem have appeared (see, e.g.,
[2, 5, 7, 6, 13, 14, 17, 22, 25]).

GeneralizedWeyl’s theorem has also been investigated for functions of opera-
tors. For T ∈ B(H) and f ∈ Hol(σ(T )), let f(T ) denote the analytic functional
calculus of T with respect to f . In this paper, we denote by Hol(σ(T )) the
set of all functions f which are analytic on some neighborhood of σ(T )(the
neighborhood depends on f). The reader is referred to ([19], Chapter VII) for
more results on analytic functional calculus. Cao, Guo and Meng [14] proved
that if T or T ∗ is p-hyponormal or M -hyponormal, then f(T ) ∈ (gW) for all
f ∈ Hol(σ(T )). Zguitti [25] proved that if T is algebraically paranormal, then
f(T ) ∈ (gW) for all f ∈ Hol(σ(T )). Curto and Han [17] proved that if T is
algebraically M -hyponormal, then f(T ) ∈ (gW) for all f ∈ Hol(σ(T )). For
more results, the reader is referred to [5, 13].

In [10], Berkani and Arroud proved that if T is hyponormal, then f(T ) ∈
(gW) for all f ∈ Hol(σ(T )). In particular, they obtained the following result.

Theorem 1.1 ([10], Theorems 2.4 and 2.10). Let T be a Banach space operator

and suppose that isoσ(T ) ⊂ σp(T ). Then f(T ) ∈ (gW) for all f ∈ Hol(σ(T ))
if and only if the following conditions hold.

(i) T ∈ (gW).
(ii) ind(T − λ) · ind(T − µ) ≥ 0 for all λ, µ /∈ σe(T ).

The main result of this paper is the following theorem which extends Theo-
rem 1.1.

Theorem 1.2 (Main Theorem). Let T ∈ B(H). Then f(T ) ∈ (gW) for all

f ∈ Hol(σ(T )) if and only if the following conditions hold.

(i) T ∈ (gW).
(ii) ind(T − λ) · ind(T − µ) ≥ 0 for all λ, µ /∈ σe(T ).
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(iii) If E(T ) 6= ∅, then iso σ(T ) ⊂ σp(T ).

Also, there exists a lot of work dealing with the stability of generalizedWeyl’s
theorem under commuting finite rank perturbations and quasinilpotent pertur-
bations (see, for example, [9, 10, 18]). In this paper, we shall investigate the
stability of generalized Weyl’s theorem under (small) compact perturbations.
Now we are going to list our results in this aspect.

First, we obtain the following result which implies that each operator in
B(H) has an arbitrarily small compact perturbation obeying generalized Weyl’s
theorem.

Theorem 1.3. Given T ∈ B(H) and ε > 0, there exists K ∈ K(H) with

‖K‖ < ε such that T +K ∈ (gW).

The following result characterizes those operators for which generalized
Weyl’s theorem is stable under small compact perturbations.

Theorem 1.4. Let T ∈ B(H). Then there exists δ > 0 such that T+K ∈ (gW)
for all K ∈ K(H) with ‖K‖ < δ if and only if the following conditions hold;

(i) T ∈ (gW).
(ii) C \ σw(T ) consists of finitely many connected components.

(iii) isoσw(T ) = ∅.

The following result characterizes those operators for which generalized
Weyl’s theorem is stable under compact perturbations.

Theorem 1.5. Let T ∈ B(H). Then T +K ∈ (gW) for all K ∈ K(H) if and

only if the following conditions hold;

(i) T ∈ (gW).
(ii) C \ σw(T ) is connected.

(iii) isoσw(T ) = ∅.

Note that if N ∈ B(H) is normal, then σ(N) = σw(N)∪σ0(N) and σw(N) =
σe(N). Also, we note that iso σ0(N) = σ0(N). Applying Theorems 1.4 and 1.5
to normal operators, we obtain the following corollary.

Corollary 1.6. Let N ∈ B(H) be normal. Then

(i) there exists δ > 0 such that N + K ∈ (gW) for all K ∈ K(H) with

‖K‖ < δ if and only if C \ σ(N) consists of finitely many connected

components and isoσe(N) = ∅;
(ii) N +K ∈ (gW) for all K ∈ K(H) if and only if C \ σ(N) is connected

and isoσe(N) = ∅.

The rest part of this paper is organized as follows. In Section 2, we shall
make some preparation for the proofs of main results. Section 3 is devoted to
the proof of Theorem 1.2. In Section 4, we shall give the proofs of Theorems
1.3, 1.4 and 1.5.
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2. Preparation

We first give some useful lemmas.

Lemma 2.1 ([23], Theorem 2.10). Let T ∈ B(H) and suppose that σ(T ) =
σ1 ∪ σ2, where σi(i = 1, 2) are clopen subsets of σ(T ) and σ1 ∩ σ2 = ∅. Then

H(σ1;T )+H(σ2;T ) = H,H(σ1;T )∩H(σ2;T ) = {0} and T admits the following

matrix representation

T =

[

T1 0
0 T2

]

H(σ1;T )
H(σ2;T ),

where σ(Ti) = σi(i = 1, 2).

Using [21, Corollary 3.22] and the above lemma, we can obtain the following
result whose proof is left to the reader.

Corollary 2.2. Let T ∈ B(H) and suppose that σ is a clopen subset of σ(T ).
Then

T =

[

A ∗
0 B

]

H(σ1;T )
H(σ1;T )

⊥ ∼

[

A 0
0 B

]

H(σ1;T )
H(σ1;T )

⊥,

where σ(A) = σ1 and σ(B) = σ(T ) \ σ1.

Therein and throughout the paper S ∼ T denotes that S and T are similar.

Lemma 2.3 ([16], Proposition 6.9). Let T ∈ B(H) and λ0 ∈ isoσ(T ). Then

the following statements are equivalent.

(i) λ0 ∈ σ0(T ).
(ii) λ0 ∈ ρ0s−F (T ).
(iii) λ0 ∈ ρs−F (T ).

Let T ∈ B(H). For λ ∈ ρs−F (T ), the minimal index of λ− T is defined by

min ind(λ − T ) := min{dimker(λ− T ), dimker(λ− T )∗}.

Lemma 2.4 ([21], Corollary 1.14). Let T ∈ B(H). Then the function λ 7→
min ind(λ − T ) is constant on every component of ρs−F (T ) except for an at

most denumerable subset ρss−F (T ) of ρs−F (T ) without limit points in ρs−F (T ).
Furthermore, if µ ∈ ρss−F (T ) and λ is a point of ρs−F (T ) in the same compo-

nent as µ but λ /∈ ρss−F (T ), then

min ind(λ− T ) < min ind(µ− T ).

Lemma 2.5 ([22], Lemma 2.7). Let T ∈ B(H) and f ∈ Hol(σ(T )). If 0 ∈
σ(f(T )) and dimker f(T ) < ∞, then there exists g ∈ Hol(σ(T )) such that

f(T ) = g(T ) and

g(z) = (z − λ1)
k1 (z − λ2)

k2 · · · (z − λn)
kng0(z),

where λi ∈ σ(T )(1 ≤ i ≤ n), g0 ∈ Hol(σ(T )) and g0(z) 6= 0 for all z ∈ σ(T ).
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Lemma 2.6 ([26], Corollary 2.9). Given T ∈ B(H) and ε > 0, there exists

K ∈ K(H) with

‖K‖ < ε+max{dist[λ, ∂σe(T )] : λ ∈ σ0(T )},

such that σp(T +K) = ρ+s−F (T ).

The following result is a direct consequence of Theorem 2.4 in [10].

Lemma 2.7 ([10], Theorem 2.4). Let T be a Banach space operator and f ∈
Hol(σ(T )). If ind(T−λ)·ind(T−µ) ≥ 0 for all λ, µ /∈ σe(T ), then f(σBW (T )) =
σBW (f(T )).

Lemma 2.8 ([8], Lemma 4.1). Let T ∈ B(H). Then T is B-Weyl if and only if

there exists an idempotent P which commutes with T such that T |kerP is Weyl

and T |ranP is nilpotent.

Lemma 2.9 ([8], Theorem 4.2). Let T ∈ B(H). If λ ∈ isoσ(T ), then the

following are equivalent.

(i) λ /∈ σBW (T ).
(ii) There exists an idempotent P commuting with T such that (T −λ)|kerP

is invertible and (T − λ)|ranP is nilpotent.

3. Proof of Theorem 1.2

In this paper, for λ ∈ C and δ > 0 we denote Bδ(λ) = {z ∈ C : |z − λ| < δ}.
We first give a useful lemma.

Lemma 3.1. Let T ∈ B(H). Then T ∈ (gW) if and only if the following

conditions hold;

(i) [σ(T ) \ σw(T )] ⊂ σ0(T ).
(ii) E(T ) ⊂ [σ(T ) \ σBW (T )].

Proof. “=⇒” By definition, it is trivial to see that T ∈ (gW) implies (ii).
Since σBW (T ) ⊂ σw(T ), it follows from T ∈ (gW) that

[σ(T ) \ σw(T )] ⊂ [σ(T ) \ σBW (T )] = E(T ).

Hence it follows from Lemma 2.3 that

[σ(T ) \ σw(T )] ⊂ [ρ0s−F (T ) ∩ E(T )] = σ0(T ).

“⇐=” Since (ii) holds for T , it remains to show that [σ(T )\σBW (T )] ⊂ E(T ).
Choose an arbitrary λ ∈ [σ(T ) \ σBW (T )]. Then, by Lemma 2.8, there exists
an idempotent such that

T =

[

A 0
0 B

]

ranP
kerP,

where A− λ is nilpotent and ind(B − λ) = 0. It is obvious that λ ∈ σp(T ). In
fact, if not, then it follows that A is absent and T − λ = B − λ is invertible,
contradicting the fact that λ ∈ σ(T ).



GENERALIZED WEYL’S THEOREM AND COMPACT PERTURBATIONS 905

Now it remains to prove that λ ∈ isoσ(T ). For a proof by contradiction, we
assume that λ /∈ isoσ(T ). Then there exists {λn}∞n=1 ⊂ σ(T ) \ {λ} such that
λn → λ. Since ind(B − λ) = 0, by the continuity of the index function, there
exists δ > 0 such that ind(B−µ) = 0 for all µ ∈ Bδ(λ). Note that σ(A) = {λ}.
It follows that ind(T − µ) = 0 for all µ ∈ Bδ(λ) \ {λ}. Since λn → λ, we may
assume that {λn}∞n=1 ⊂ Bδ(λ). It follows that {λn}∞n=1 ⊂ [σ(T ) \ σw(T )] and
hence {λn}∞n=1 ⊂ σp(T ). Noting that σ(A) = {λ}, we obtain {λn}∞n=1 ⊂ σp(B).

Since (i) holds, by Lemma 2.4, we deduce that T − µ is invertible for all
µ ∈ Bδ(λ) \ {λ} except for an at most denumerable subset. By σ(A) = {λ}, it
follows that B − µ is invertible for all µ ∈ Bδ(λ) \ {λ} except for an at most
denumerable subset. Then, by Lemma 2.4, {λn}∞n=1 ⊂ ρss−F (B), and hence
λ ∈ σlre(B), contradicting the fact that ind(B − λ) = 0. This completes the
proof. �

Corollary 3.2. Let T ∈ B(H). If [σ(T ) \ σw(T )] ⊂ σ0(T ) and E(T ) ⊂ σ0(T ),
then T ∈ (gW).

Lemma 3.3 ([22], Theorem 1.2). Let T ∈ B(H). Then f(T ) ∈ (W) for all

f ∈ Hol(σ(T )) if and only if the following conditions hold;

(i) T ∈ (W).
(ii) ind(T − λ) · ind(T − µ) ≥ 0 for all λ, µ /∈ σe(T ).
(iii) If σ0(T ) 6= ∅, then isoσ(T ) ⊂ σp(T ).

Now, we are going to give the proof of Theorem 1.2.

Proof of Theorem 1.2. “=⇒” Assume that f(T ) ∈ (gW) for all f ∈ Hol(σ(T )).
(i) Set f1(λ) = λ. Then, evidently, T = f1(T ) ∈ (gW).
(ii) If (ii) does not hold, then, by Lemma 3.3, there exists a polynomial f2

such that f2(T ) /∈ (W) and, moreover, f2(T ) /∈ (gW), a contradiction.
(iii) For a proof by contradiction, we assume that (iii) does not hold. Then

we can choose λ ∈ E(T ) and µ ∈ isoσ(T ) satisfying µ /∈ σp(T ). Set g(z) =
(z − λ)(z − µ). It is easy to see that 0 ∈ E(g(T )). Since g(T ) ∈ (gW), there
exists n0 ∈ N such that ind(g(T )[n]) = 0 for n ≥ n0. Without loss of generality,
assume that (i) holds for T , hence λ /∈ σBW (T ). By Lemma 2.9, there exists
an idempotent P commuting with T such that T − λ admits the following
representation

T − λ =

[

A 0
0 B

]

ranP
kerP,

where A is nilpotent and B is invertible. Noting that

g(T ) =

[

A(A+ λ− µ) 0
0 B(B + λ− µ)

]

ranP
kerP,

there exists some large enough k ∈ N such that Ak = 0 and ind(g(T )[k]) = 0.
Noting that

g(T )k =

[

0 0
0 Bk(B + λ− µ)k

]

ranP
kerP,
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it follows that ran g(T )k = ranBk(B + λ − µ)k and hence g(T )[k] = [B(B +
λ − µ)][k]. Thus ind([B(B + λ − µ)][k]) = 0. By Lemma 2.8, there exists an
idempotent Q on kerP commuting with B(B+λ−µ) such that B(B+ λ−µ)
can be represented as

B(B + λ− µ) =

[

E 0
0 F

]

ranQ
kerQ,

whereE is nilpotent and indF = 0. Note that µ /∈ σp(T ) and hence B(B+λ−µ)
is injective. It follows that E is absent and B(B + λ − µ) = F is invertible.
Hence B + λ− µ is invertible.

It is easy to see that

T − µ =

[

A+ λ− µ 0
0 B + λ− µ

]

ranP
kerP.

Because λ 6= µ, A+λ−µ is invertible. Hence T−µ is invertible, a contradiction.
“⇐=” Choose an arbitrary f ∈ Hol(σ(T )). It suffices to prove that f(T ) ∈

(gW).
Step 1. [σ(f(T )) \ σw(f(T ))] ⊂ σ0(f(T )).
If λ ∈ [σ(f(T )) \ σw(f(T ))], then ind(f(T ) − λ) = 0. Now we are going to

show that λ ∈ σ0(f(T )). It is easy to see that 0 < dimker(f(T ) − λ) < ∞.
Then, by Lemma 2.5, we may directly assume that {λi}

n
i=1 is an enumeration

of {z ∈ σ(T ) : f(z)− λ = 0} and

f(z)− λ = (z − λ1)
k1 · · · (z − λn)

kng(z),

where g(z) 6= 0 for all z ∈ σ(T ). Then

f(T )− λ = (T − λ1)
k1 · · · (T − λn)

kng(T ),

where g(T ) is invertible.
Since λ /∈ σw(f(T )), we have λi /∈ σe(T ) and

∑n

i=1 ki · ind(T − λi) = 0. It
follows from (ii) that ind(T − λi) = 0 for 1 ≤ i ≤ n. Since (i) holds for T ,
using Lemma 3.1, we obtain that λi ∈ σ0(T ). Now it is easy to check that
λ ∈ σ0(f(T )).

Step 2. E(f(T )) ⊂ [σ(f(T )) \ σBW (f(T ))].
Let λ ∈ E(f(T )) be fixed. We first assume that f(·) is not constant on any

connected component of its domain and

f(T )− λ = (T − λ1)
k1 · · · (T − λn)

kng(T ),

where λi ∈ σ(T ) for 1 ≤ i ≤ n and g(T ) is invertible. From λ ∈ E(f(T )),
we have λi ∈ isoσ(T ) for all i and there exists an i0 such that λi0 ∈ σp(T ),
hence λi0 ∈ E(T ). By (iii), we can deduce that λi ∈ σp(T ) for all i and hence
λi ∈ E(T ) for all i. As (i) holds for T , consequently we obtain λi /∈ σBW (T )
for all i. Note that (ii) holds for T . By Lemma 2.7, we have λ /∈ σBW (f(T )).

If f(z) ≡ λ on some clopen subset σ1 of σ(T ), then, by Lemma 2.1, f(T )−λ
is zero on H(σ1;T ). In this case, one can deal with T |H(σ1;T ) and T |H(σ(T )\σ1;T )
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respectively. From Lemma 2.9, it is easy to see that the above argument also
applies. �

If one checks the proof of Theorem 1.2, then one can easily obtain the fol-
lowing result.

Corollary 3.4. Let T ∈ B(H). Then f(T ) ∈ (gW) for all f ∈ Hol(σ(T )) if

and only if p(T ) ∈ (gW) for each polynomial p(λ).

Remark 3.5. Since Lemmas 2.8 and 2.9 also hold for Banach space operators,
one can easily check that the result of Theorem 1.2 can be extended to Banach
space operators.

4. Proofs of Theorems 1.3, 1.4 and 1.5

We first give the proof of Theorem 1.3.

Proof of Theorem 1.3. For given ε > 0, set σ1 = {λ ∈ σ0(T ) : dist[λ, ∂σe(T )] ≥
ε}. Then σ1 is a finite, clopen subset of σ(T ). Set σ2 = σ(T )\σ1. By Corollary
2.2, T admits the following representation

T =

[

T1 ∗
0 T2

]

H(σ1;T )
H(σ1;T )

⊥,

where σ(Ti) = σi(i = 1, 2). Then one can verify that

max{dist[λ, ∂σe(T2)] : λ ∈ σ0(T2)} < ε.

By Lemma 2.6, there exists a compact operator K on H(σ1;T )
⊥ with ‖K‖ < ε

such that σp(T2 +K) = ρ+s−F (T2). Denote T2 = T2 +K and set

K =

[

0 0
0 K

]

H(σ1;T )
H(σ1;T )

⊥.

Then K ∈ K(H), ‖K‖ < ε and

T +K =

[

T1 ∗
0 T2

]

H(σ1;T )
H(σ1;T )

⊥.

Now it remains to show that T +K ∈ (gW).
σp(T2) = ρ+s−F (T2) implies that σ(T2) = σw(T2) and hence σ(T2)∩σ(T1) = ∅.

Since σp(T2) = ρ+s−F (T2) = ρ+s−F (T + K) and dimH(σ1;T ) < ∞, we can

deduce that σ0(T + K) = σ1 = σ(T1) and σp(T + K) = ρ+s−F (T + K) ∪
σ0(T + K). It follows that E(T + K) = σ0(T + K). On the other hand, if
λ ∈ [σ(T + K) \ σw(T + K)], then it is easy to see that λ ∈ σp(T + K) and
hence λ ∈ [σp(T +K)\ρ+s−F (T +K)] = σ0(T +K). By Corollary 3.2, we obtain
T +K ∈ (gW). �

Given a subset σ of C, we denote σc = C \ σ.
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Lemma 4.1 ([20], Theorem 3.1). Let T ∈ B(H) and let Φ be the union of a

collection of bounded components of (σ(T ) \ σ0(T ))
c. Then there exists K ∈

K(H) such that σ(T +K) = σ(T ) ∪ Φ.

Lemma 4.2 ([22], Proposition 4.10). Let T ∈ B(H). If σ(T ) = σw(T )∪σ0(T )
and C \ σw(T ) consists of at most finitely many connected components, then

there exists δ > 0 such that σ(T+K) = σw(T+K)∪σ0(T+K) for all K ∈ K(H)
with ‖K‖ < δ.

Lemma 4.3 ([22], Theorem 1.4). Let T ∈ B(H). Then there exists δ > 0 such

that T +K ∈ (W) for all K ∈ K(H) with ‖K‖ < δ if and only if the following

conditions hold;

(i) T ∈ (W).
(ii) C \ σw(T ) consists of finitely many connected components.

(iii) iso[σw(T )] = ∅.

Now we are going to give the proofs of Theorems 1.4 and 1.5.

Proof of Theorem 1.4. “=⇒” Since there exists δ > 0 such that T +K ∈ (gW)
for all K ∈ K(H) with ‖K‖ < δ, it follows that T ∈ (gW). If (ii) or (iii)
does not hold, then, for arbitrarily given ε > 0, by Lemma 4.3, there exists
K ∈ K(H) with ‖K‖ < ε such that T +K /∈ (W), hence T +K /∈ (gW).

“⇐=” Assume that (i), (ii), and (iii) hold for T . By Lemma 3.1, it follows
from T ∈ (gW) that σ(T ) = σw(T ) ∪ σ0(T ). Furthermore, since (ii) holds, by
Lemma 4.2, there exists δ > 0 such that σ(T +K) = σw(T +K) ∪ σ0(T +K)
for all K ∈ K(H) with ‖K‖ < δ. To complete the proof for the sufficiency, by
Lemma 3.1, we need only prove that E(T +K) ⊂ [σ(T +K) \ σBW (T +K)]
for all K ∈ K(H) with ‖K‖ < δ.

In fact, if not, there exist K ∈ K(H) with ‖K‖ < δ and λ0 ∈ E(T +K) ∩
σBW (T + K). Since σBW (T + K) ⊂ σw(T + K), we have λ0 ∈ E(T + K) ∩
σw(T + K) and hence λ0 ∈ iso σw(T + K) = isoσw(T ) = ∅, a contradiction.
Thus we have proved that T +K ∈ (gW) for all K ∈ K(H) with ‖K‖ < δ. �

Proof of Theorem 1.5. “=⇒” By Theorem 1.4, if (i) or (iii) does not hold,
for arbitrarily given ε > 0, there exists K ∈ K(H) with ‖K‖ < ε such that
T+K /∈ (gW). If C\σw(T ) is not connected, denote by Ω a bounded component
of C \ σw(T ). Without loss of generality, assume that (i) holds for T . Then by
Lemma 3.1, σ(T ) = σw(T ) ∪ σ0(T ) and hence Ω is a bounded component of
[σ(T ) \ σ0(T )]

c. By Lemma 4.1, there exists K ∈ K(H) such that σ(T +K) =
σ(T )∪Ω. Obviously, Ω ⊂ [σ(T+K)\σw(T+K)] and hence σ(T+K)\σw(T+K)
is not a subset of σ0(T +K). By Lemma 3.1, we conclude that T +K /∈ (gW).

“⇐=” Choose an arbitrary compact operator K on H, we shall prove that
T + K ∈ (gW). Note that C \ σw(T + K) = C \ σw(T ) is connected, which
contains σ(T + K)c. Using Lemma 2.4, we have min ind(T +K − λ) = 0 on
C\σw(T +K) except an at most denumerable set σ0(T +K). Hence T +K−λ
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is invertible for all λ ∈ [(σw(T + K) ∪ σ0(T + K))]c. Now we conclude that
σ(T +K) = σw(T +K) ∪ σ0(T +K).

On the other hand, if λ ∈ E(T +K), then, using a similar argument as in
proof for the sufficiency of Theorem 1.4, one can prove that λ ∈ [σ(T +K) \
σBW (T +K)]. This completes the proof. �
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[4] P. Aiena, M. T. Biondi, and F. Villafañe, Property (w) and perturbations. III, J. Math.
Anal. Appl. 353 (2009), no. 1, 205–214.

[5] M. Amouch, Weyl type theorems for operators satisfying the single-valued extension

property, J. Math. Anal. Appl. 326 (2007), no. 2, 1476–1484.
[6] I. J. An and Y. M. Han, Weyl’s theorem for algebraically quasi-class A operators, Inte-

gral Equations Operator Theory 62 (2008), no. 1, 1–10.
[7] S. K. Berberian, An extension of Weyl’s theorem to a class of not necessarily normal

operators, Michigan Math. J. 16 (1969), 273–279.
[8] M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc.

Amer. Math. Soc. 130 (2002), no. 6, 1717–1723 (electronic).
[9] , On the equivalence of Weyl theorem and generalized Weyl theorem, Acta Math.

Sin. (Engl. Ser.) 23 (2007), no. 1, 103–110.
[10] M. Berkani and A. Arroud, Generalized Weyl’s theorem and hyponormal operators, J.

Aust. Math. Soc. 76 (2004), no. 2, 291–302.
[11] M. Berkani and J. J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci.

Math. (Szeged) 69 (2003), no. 1-2, 359–376.
[12] M. Berkani and M. Sarih, On semi B-Fredholm operators, Glasg. Math. J. 43 (2001),

no. 3, 457–465.
[13] X. H. Cao, Topological uniform descent and Weyl type theorem, Linear Algebra Appl.

420 (2007), no. 1, 175–182.
[14] X. H. Cao, M. Z. Guo, and B. Meng, Weyl type theorems for p-hyponormal and M-

hyponormal operators, Studia Math. 163 (2004), no. 2, 177–188.
[15] L. A. Coburn, Weyl’s theorem for nonnormal operators, Michigan Math. J. 13 (1966),

285–288.
[16] J. B. Conway, A course in Functional Analysis, second ed., Graduate Texts in Mathe-

matics, vol. 96, Springer-Verlag, New York, 1990.
[17] R. E. Curto and Y. M. Han, Generalized Browder’s and Weyl’s theorems for Banach

space operators, J. Math. Anal. Appl. 336 (2007), no. 2, 1424–1442.
[18] B. P. Duggal, Hereditarily polaroid operators, SVEP and Weyl’s theorem, J. Math. Anal.

Appl. 340 (2008), no. 1, 366–373.
[19] N. Dunford and J. T. Schwartz, Linear Operators. Part I, A Wiley-Interscience Publi-

cation, John Wiley & Sons, Inc., New York, 1988.
[20] D. A. Herrero, Economical compact perturbations. II. Filling in the holes, J. Operator

Theory 19 (1988), no. 1, 25–42.



910 T. T. ZHOU, C. G. LI, AND S. ZHU

[21] , Approximation of Hilbert Space Operators. Vol. 1, second ed., Pitman Research
Notes in Mathematics Series, vol. 224, Longman Scientific & Technical, Harlow, 1989.

[22] C. G. Li, S. Zhu, and Y. L. Feng, Weyl’s theorem for functions of operators and ap-

proximation, Integral Equations Operator Theory 67 (2010), no. 4, 481–497.
[23] H. Radjavi and P. Rosenthal, Invariant Subspaces, second ed., Dover Publications Inc.,

Mineola, NY, 2003.
[24] H. Weyl, Uber beschrankte quadratische formen, deren differenz, vollsteig ist, Rend.

Circ. Mat. Palermo 27 (1909), 373–392.
[25] H. Zguitti, A note on generalized Weyl’s theorem, J. Math. Anal. Appl. 316 (2006),

no. 1, 373–381.
[26] S. Zhu and C. G. Li, SVEP and compact perturbations, J. Math. Anal. Appl. 380 (2011),

no. 1, 69–75.

Ting Ting Zhou

Institute of Mathematics

Jilin University

Changchun 130012, P. R. China

E-mail address: zhoutt09@mails.jlu.edu.cn

Chun Guang Li

Institute of Mathematics

Jilin University

Changchun 130012, P. R. China

E-mail address: licg09@mails.jlu.edu.cn

Sen Zhu

Department of Mathematics

Jilin University

Changchun 130012, P. R. China

Current address:

School of Mathematical Sciences

Fudan University

Shanghai 200433, P. R. China

E-mail address: zhusen@jlu.edu.cn


