• Title/Summary/Keyword: generalized inverse matrix

Search Result 62, Processing Time 0.026 seconds

Dynamic Optimization Algorithm of Constrained Motion

  • Eun, Hee-Chang;Yang, Keun-Heok;Chung, Heon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1072-1078
    • /
    • 2002
  • The constrained motion requires the determination of constraint force acting on unconstrained systems for satisfying given constraints. Most of the methods to decide the force depend on numerical approaches such that the Lagrange multiplier method, and the other methods need vector analysis or complicated intermediate process. In 1992, Udwadia and Kalaba presented the generalized inverse method to describe the constrained motion as well as to calculate the constraint force. The generalized inverse method has the advantages which do not require any linearization process for the control of nonlinear systems and can explicitly describe the motion of holonomically and/or nongolonomically constrained systems. In this paper, an explicit equation to describe the constrained motion is derived by minimizing the performance index, which is a function of constraint force vector, with respect to the constraint force. At this time, it is shown that the positive-definite weighting matrix in the performance index must be the inverse of mass matrix on the basis of the Gauss's principle and the derived differential equation coincides with the generalized inverse method. The effectiveness of this method is illustrated by means of two numerical applications.

ON THE REFLEXIVE SOLUTIONS OF THE MATRIX EQUATION AXB + CYD = E

  • Dehghan, Mehdi;Hajarian, Masoud
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.511-519
    • /
    • 2009
  • A matrix $P{\in}\mathbb{C}^{n{\times}n}$ is called a generalized reflection matrix if $P^*$ = P and $P^2$ = I. An $n{\times}n$ complex matrix A is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix P if A = PAP (A = -PAP). It is well-known that the reflexive and anti-reflexive matrices with respect to the generalized reflection matrix P have many special properties and widely used in engineering and scientific computations. In this paper, we give new necessary and sufficient conditions for the existence of the reflexive (anti-reflexive) solutions to the linear matrix equation AXB + CY D = E and derive representation of the general reflexive (anti-reflexive) solutions to this matrix equation. By using the obtained results, we investigate the reflexive (anti-reflexive) solutions of some special cases of this matrix equation.

SINGULAR CASE OF GENERALIZED FIBONACCI AND LUCAS MATRICES

  • Miladinovic, Marko;Stanimirovic, Predrag
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.33-48
    • /
    • 2011
  • The notion of the generalized Fibonacci matrix $\mathcal{F}_n^{(a,b,s)}$ of type s, whose nonzero elements are generalized Fibonacci numbers, is introduced in the paper [23]. Regular case s = 0 is investigated in [23]. In the present article we consider singular case s = -1. Pseudoinverse of the generalized Fibonacci matrix $\mathcal{F}_n^{(a,b,-1)}$ is derived. Correlations between the matrix $\mathcal{F}_n^{(a,b,-1)}$ and the Pascal matrices are considered. Some combinatorial identities involving generalized Fibonacci numbers are derived. A class of test matrices for computing the Moore-Penrose inverse is presented in the last section.

Dynamic analysis of deployable structures using independent displacement modes based on Moore-Penrose generalized inverse matrix

  • Xiang, Ping;Wu, Minger;Zhou, Rui Q.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1153-1174
    • /
    • 2015
  • Deployable structures have gained more and more applications in space and civil structures, while it takes a large amount of computational resources to analyze this kind of multibody systems using common analysis methods. This paper presents a new approach for dynamic analysis of multibody systems consisting of both rigid bars and arbitrarily shaped rigid bodies. The bars and rigid bodies are connected through their nodes by ideal pin joints, which are usually fundamental components of deployable structures. Utilizing the Moore-Penrose generalized inverse matrix, equations of motion and constraint equations of the bars and rigid bodies are formulated with nodal Cartesian coordinates as unknowns. Based on the constraint equations, the nodal displacements are expressed as linear combination of the independent modes of the rigid body displacements, i.e., the null space orthogonal basis of the constraint matrix. The proposed method has less unknowns and a simple formulation compared with common multibody dynamic methods. An analysis program for the proposed method is developed, and its validity and efficiency are investigated by analyses of several representative numerical examples, where good accuracy and efficiency are demonstrated through comparison with commercial software package ADAMS.

GENERALIZED INVERSES IN NUMERICAL SOLUTIONS OF CAUCHY SINGULAR INTEGRAL EQUATIONS

  • Kim, S.
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.4
    • /
    • pp.875-888
    • /
    • 1998
  • The use of the zeros of Chebyshev polynomial of the first kind $T_{4n+4(x}$ ) and second kind $U_{2n+1}$ (x) for Gauss-Chebyshev quad-rature and collocation of singular integral equations of Cauchy type yields computationally accurate solutions over other combinations of $T_{n}$ /(x) and $U_{m}$(x) as in [8]. We show that the coefficient matrix of the overdetermined system has the generalized inverse. We estimate the residual error using the norm of the generalized inverse.e.

  • PDF

CONDENSED CRAMER RULE FOR COMPUTING A KIND OF RESTRICTED MATRIX EQUATION

  • Gu, Chao;Xu, Zhaoliang
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1011-1020
    • /
    • 2008
  • The problem of finding Cramer rule for solutions of some restricted linear equation Ax = b has been widely discussed. Recently Wang and Qiao consider the following more general problem AXB = D, $R(X){\subset}T$, $N(X){\supset}\tilde{S}$. They present the solution of above general restricted matrix equation by using generalized inverses and give an explicit expression for the elements of the solution matrix for the matrix equation. In this paper we re-consider the restricted matrix equation and give an equivalent matrix equation to it. Through the equivalent matrix equation, we derive condensed Cramer rule for above restricted matrix equation. As an application, condensed determinantal expressions for $A_{T,S}^{(2)}$ A and $AA_{T,S}^{(2)}$ are established. Based on above results, we present a method for computing the solution of a kind of restricted matrix equation.

  • PDF

Properties and Characteristics of Jacket Matrices (Jacket 행렬의 성질과 특성)

  • Yang, Jae-Seung;Park, Ju-Yong;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.25-33
    • /
    • 2015
  • As a reversible Jacket is having the compatibility of two sided wearing, the matrix that both the inside and the outside are compatible is called Jacket matrix, and the matrix is having both inside and outside by the processes of element-wise inverse and block-wise inverse. This concept had been completed by one of the authors Moon Ho Lee in 1989, and finally that resultant matrix has been christened as Jacket matrix, in 2000. This is the most generalized extension of the well known Hadamard matrices, which includes both orthogonal and non-orthogonal matrices. This matrix addresses many problems in information and communication theories. we investigate the properties of the Jacket matrix, i.e. determinants, eigenvalues, and kronecker product. These computations are very useful for signal processing and orthogonal codes design. In our proposal, we provide some results to calculate these values by using a very simple mathematical model with less complexity.

Development of Inverse Solver based on TSVD in Electrical Impedance Tomography (전기 임피던스 단층촬영법에서 TSVD 기반의 역문제 해법의 개발)

  • Kim, Bong Seok;Kim, Chang Il;Kim, Kyung Youn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.91-98
    • /
    • 2017
  • Electrical impedance tomography is a nondestructive imaging technique to reconstruct unknown conductivity distribution based on applied current data and measured voltage data through an array of electrodes attached on the periphery of a domain. In this paper, an inverse method based on truncated singular value decomposition is proposed to solve the inverse problem with the generalized Tikhonov regularization and to reconstruct the conductivity distribution. In order to reduce the inverse computational time, truncated singular value decomposition is applied to the inverse term after the generalized regularization matrix is taken out from the inverse matrix term. Numerical experiments and phantom experiments have been performed to verify the performance of the proposed method.

Analytical Method for Constrained Mechanical and Structural Systems

  • Eun, Hee-Chang;Park, Sang-Yeol;Lee, Eun-Taik;Chung, Heon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1691-1699
    • /
    • 2004
  • The objective of this study is to present an accurate and simple method to describe the motion of constrained mechanical or structural systems. The proposed method is an elimination method to require less effort in computing Moore-Penrose inverse matrix than the generalized inverse method provided by Udwadia and Kalaba. Considering that the results by numerical integration of the derived second-order differential equation to describe constrained motion veer away the constrained trajectories, this study presents a numerical integration scheme to obtain more accurate results. Applications of holonomically or nonholonomically constrained systems illustrate the validity and effectiveness of the proposed method.

Searching for the Steady State of Unstable Link Structures by using Reduced Dimension Technique (차원 저감화기법을 이용한 불안정 링크구조물의 안정경로 탐색)

  • Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.1 s.11
    • /
    • pp.39-48
    • /
    • 2004
  • Generally, a structural system with large inextensional deformations, or in other words, non-strained deformation is called as 'Unstable Structure', Truss-linked structures, cable structures, membrane structures and movable structures as foldable space structures etc, are included in this category. In this paper, a dynamic analysis method for unstable structural systems is presented. Governing equations for dynamic analysis of unstable truss structures with inextensional displacements are derived. Because of singularity of inverse matrixin in practical analysis of unstable structure, the generalized inverse matrix is Introduced to resolve the singular problem. Also, the RREF technique is used to get the inextensional displacement mode. Two unstable truss structures are analyzed by using presented method. Damping is not considered. From the given results, it is known that proposed method is useful to figure out the dynamic behavior of unstable truss structures.

  • PDF