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SINGULAR CASE OF GENERALIZED FIBONACCI AND

LUCAS MATRICES

Marko Miladinović and Predrag Stanimirović

Abstract. The notion of the generalized Fibonacci matrix F(a,b,s)
n of

type s, whose nonzero elements are generalized Fibonacci numbers, is
introduced in the paper [23]. Regular case s = 0 is investigated in [23].

In the present article we consider singular case s = −1. Pseudoinverse

of the generalized Fibonacci matrix F(a,b,−1)
n is derived. Correlations

between the matrix F(a,b,−1)
n and the Pascal matrices are considered.

Some combinatorial identities involving generalized Fibonacci numbers
are derived. A class of test matrices for computing the Moore-Penrose
inverse is presented in the last section.

1. Introduction

Let C be the set of complex numbers, Cm×n the set of m × n complex
matrices, and Cm×n

r a subset of Cm×n consisting matrices of rank r: Cm×n
r =

{X ∈ Cm×n | rank(X)=r}. By A† we denote the Moore-Penrose inverse of A,
i.e., the unique matrix A† satisfying [4]

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A,

where the superscript ∗ denotes conjugate and transpose: A∗ = A
T
.

There are well known various methods for computing the Moore-Penrose
inverse (see for example [4], [26]). The most commonly implemented method
in programming languages is the Singular Value Decomposition (SVD) method,
that is implemented, for example, in the “pinv” function fromMatlab, as well as
in the standard MATHEMATICA function “PseudoInverse” [8], [28]. This method
is very accurate, but time consuming when the matrix is large [4], [8]. Other
well-known methods are Greville’s algorithm, the full rank QR factorization
by Gram-Schmidt orthonormalization (GSO), and iterative methods of various
orders [4].
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Grevile in [11] proposed a recursive algorithm which relates the Moore-
Penrose pseudoinverse of a matrix R augmented by an appropriate vector r
with the pseudoinverse R† of R. A generalization of this statement, which is
applicable to rational matrices and its implementation in the package MATHE-

MATICA is presented in [24]. In the present paper we use this implementation
in the pseudoinverse computation.

The Fibonacci numbers {Fn}∞n=0 are the terms of the sequence 0, 1, 1, 2, 3, 5,
. . ., where each term is the sum of the two preceding terms, and we get things
started with 0 and 1 as F0 and F1. You cannot go very far in the lore of
Fibonacci numbers without encountering the companion sequence of Lucas
numbers {Ln}∞n=0, which follows the same recursive pattern as the Fibonacci
numbers, but begins with L0 = 2 and L1 = 1. The sequence of Lucas numbers
is therefore 2, 1, 3, 4, 7, . . .. We also observe so-called generalized Fibonacci

numbers, {F (a,b)
n }∞n=0, which satisfy the same recursive formula F

(a,b)
n+2 =F

(a,b)
n+1 +

F
(a,b)
n , n = 0, 1, . . ., but starting with arbitrary initial values F

(a,b)
0 = a and

F
(a,b)
1 = b, (see for example [18], [16], [25], [19, Chapter 7]).

The n×n Fibonacci matrix Fn=[fi,j ] (i, j=1, . . . , n) is defined by [20]:

(1.1) fi,j =

{
Fi−j+1, i− j + 1 ≥ 0,
0, i− j + 1 < 0.

The inverse and Cholesky factorization of the Fibonacci matrix are given in
[20]. The relations between the Pascal matrix and the Fibonacci matrix are
studied in [21].

As an analogy of the Fibonacci matrix, the n × n Lucas matrix Ln =
[li,j ] (i, j = 1, . . . , n) is defined in [32]:

(1.2) li,j =

{
Li−j+1, i− j ≥ 0,
0, i− j < 0.

In the paper [22] the author investigated the inverse and Cholesky factor-
ization of the matrix Un with entries

(1.3) ui,j =

{
Ui−j+1, i− j + 1 ≥ 0,
0, i− j + 1 < 0,

where Un is the non-degenerated second order sequence Un+1 = AUn+BUn−1,
δ =

√
A2 + 4B real, and where A,B,U1 are integers and U0 = 0 (i.e., A = B).

In [22] the author also generalized these results to r-order recurrent sequence
satisfying U0 = U−1 = · · · = U2−r = 0, U1 arbitrary.

Notions of Fibonacci and Lucas matrix are included in the following defini-
tion from [23].

Definition 1.1. Let F
(a,b)
n be the n-th generalized Fibonacci number, where

the starting members of the Fibonacci array are F0 = a and F1 = b, and
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where a, b ∈ C. The generalized Fibonacci matrix of type s and of the order n,

denoted by F (a,b,s)
n = [f

(a,b,s)
ij ], is defined by

(1.4) f
(a,b,s)
i,j =

{
F

(a,b)
i−j+1, i− j + s ≥ 0

0, i− j + s < 0
i, j = 1, . . . , n.

Example 1.1. The 6× 6 generalized Fibonacci matrix of type −1 is equal to

F (a,b,−1)
6 =


0 0 0 0 0 0

a+ b 0 0 0 0 0
a+ 2b a+ b 0 0 0 0
2a+ 3b a+ 2b a+ b 0 0 0
3a+ 5b 2a+ 3b a+ 2b a+ b 0 0
5a+ 8b 3a+ 5b 2a+ 3b a+ 2b a+ b 0

 .

We observe that F (a,b,−1)
n is a strictly lower triangular Toeplitz matrix, and

therefore it is singular. Toeplitz matrices are matrices having constant entries
along their diagonals. This structure is very interesting in itself for all the rich
theoretical properties which it involves, but at the same time it is important
for the dramatic impact that it has in applications. Toeplitz matrix arises in
scientific computing and engineering, for example, image processing, numerical
differential equations and integral equations, time series analysis and control
theory (see, for example [6], [17]). Toeplitz matrices arise quite naturally in
the study of discrete time random processes. Covariance matrices of weakly
stationary processes are Toeplitz and triangular Toeplitz matrices provide a
matrix representation of causal linear time invariant filters [10]. Toeplitz ma-
trices are also closely connected with Fourier series, because the multiplication
operator by a trigonometric polynomial, compressed to a finite-dimensional
space, can be represented by such a matrix. In communication theory, a fi-
nite duration impulse response (FIR) filter in discrete-time is constructed for
purposes of linear prediction of a random process X(t). The autocorrelation
matrix of X is found to be a Toeplitz matrix. Also, textbooks go one step fur-
ther in trying to find the optimal predictor coefficients, by taking the inverse
of this matrix. On the other hand, in singular cases, there are a number of
papers which investigate the usual inverse and various generalized inverses of
some Toeplitz-like matrices. The generalized inverse for Hankel and Toeplitz
matrices can be found in [1, 9, 14, 15, 13, 27, 29]. Hartwig and Shoaf [12]
considered the group inverse and the Drazin inverse of singular bidiagonal and
triangular Toeplitz matrices.

We compute the pseudoinverse of generalized Fibonacci matrix F (a,b,−1)
n , of

type −1, whose nonzero elements are generalized Fibonacci numbers F
(a,b)
n .

Results obtained in [23] include known facts about the generalized Fibonacci
matrices and their properties only in regular cases s = 0 and s = 1. At this

moment we consider matrices F (a,b,s)
n , s < 0 with a special view on s = −1. A

correlation between the generalized Fibonacci matrix F (a,b,−1)
n and the Pascal
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matrix of the first and the second kind is considered in Section 3. An application
of these results is reached in the fourth section, where some combinatorial
identities involving generalized Fibonacci numbers and binomial coefficients
are derived. In the last section we get a class of test matrices for computing
the Moore-Penrose inverse.

2. Generalized Fibonacci matrix of type s = −1 and its inverse

In this section we compute the Moore-Penrose inverse for singular general-

ized Fibonacci matrix F (a,b,−1)
n .

Lemma 2.1. For the generalized Fibonacci numbers F
(a,b)
n , (a ̸= −b) and for

two arbitrary integers i, j satisfying i ≥ j + 2 the following is valid:
(2.1)

i−1∑
k=j+1

F
(a,b)
i−k+1

(a2 + ab− b2)(−b)k−j−1

(a+ b)k−j+2
= − b

(a+ b)2
F

(a,b)
i−j+1 +

1

(a+ b)
F

(a,b)
i−j .

Proof. It is not difficult to verify the following generalization of the Binet’s
Fibonacci number formula (see [23]):

(2.2) F (a,b)
n = c1α

n + c2β
n,

where

c1 =
5a+

√
5a− 2

√
5b

10
, c2 =

5a−
√
5a+ 2

√
5b

10
,

α =
1−

√
5

2
, β =

1 +
√
5

2
.

From previous equalities we have

(2.3) αβ = −1, α+ β = 1, α− β = −
√
5.

Let us denote

I =
i−1∑

k=j+1

Fi−k+1
(−b)k−j−1

(a+ b)k−j+2
.

By applying (2.2) and simple transformations, we obtain the following:

I =
i−1∑

k=j+1

(c1α
i−k+1 + c2β

i−k+1)
(−b)k−j−1

(a+ b)k−j+2

=
c1α

2(a+ b)j−i−1

(−b)j−i+2

i−1∑
k=j+1

(
−α(a+ b)

b

)i−k−1

+
c2β

2(a+ b)j−i−1

(−b)j−i+2

i−1∑
k=j+1

(
−β(a+ b)

b

)i−k−1

=
c1α

2(a+ b)j−i−1

(−b)j−i+2
·
1−

(
−α(a+b)

b

)i−j−1

1 + α(a+b)
b

+
c2β

2(a+ b)j−i−1

(−b)j−i+2
·
1−

(
−β(a+b)

b

)i−j−1

1 + β(a+b)
b

.
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After some algebraic transformations we get

I =
c1α

2(a+ b)j−i−1(−b)i−j + c1α
i−j+1 b

(a+b)2

(b+ αa+ αb)(b+ βa+ βb)

+
−c1α

2β(a+ b)j−i(−b)i−j−1 + c1α
i−j+1 β

(a+b)

(b+ αa+ αb)(b+ βa+ βb)

+
c2β

2(a+ b)j−i−1(−b)i−j + c2β
i−j+1 b

(a+b)2

(b+ αa+ αb)(b+ βa+ βb)

+
−c2β

2α(a+ b)j−i(−b)i−j−1 + c2β
i−j+1 α

(a+b)

(b+ αa+ αb)(b+ βa+ βb)
.

Using identities (b+αa+αb)(b+βa+βb) = −(a2+ab−b2), (2.3) and grouping
similar members using (2.2) we have that the following is valid:

I =
(a+ b)j−i−1(−b)i−jF

(a,b)
2 + b

(a+b)2F
(a,b)
i−j+1 + (a+ b)j−i(−b)i−j−1F

(a,b)
1 − 1

a+bF
(a,b)
i−j

−(a2 + ab− b2)

=
− b

(a+b)2F
(a,b)
i−j+1 +

1
a+bF

(a,b)
i−j

(a2 + ab− b2)
.

Finally, from

i−1∑
k=j+1

F
(a,b)
i−k+1

(a2 + ab− b2)(−b)k−j−1

(a+ b)k−j+2
= (a2 + ab− b2)I

we complete the proof. □

Lemma 2.2. For n× n matrix X (a,b)
n = [xi,j ] defined by

(2.4) xi,j =


−(−b)i−j−1 · (a2+ab−b2)

(a+b)i−j+2 , (i > j, i ̸= n, j ̸= 1)

− a+2b
(a+b)2 , (i = j, i /∈ {1, n})
1

a+b , i+ 1 = j

0, otherwise,

the following is valid

(2.5) F (a,b,−1)
n · X (a,b)

n = Vn,

where Vn = [vi,j ] is n× n matrix given by

vi,j =

{
1, (i = j, i ̸= 1)
0, otherwise.

Proof. Let
∑n

k=1 f
(a,b,−1)
i,k xk,j = vi,j . First we want to prove that vi,j = 0,

i ̸= j. Obviously vi,j = 0, i < j.
In the case i = j + 1 one can verify the following:

vj+1,j =
1

a+ b
fj+1,j−1 −

a+ 2b

(a+ b)2
fj+1,j
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=
1

a+ b
F

(a,b)
3 − a+ 2b

(a+ b)2
F

(a,b)
2

=
a+ 2b

(a+ b)
− a+ 2b

(a+ b)

= 0.

When i > j + 1 applying the results from Lemma 2.1 we obtain

vi,j =
1

a+ b
fi,j−1 −

a+ 2b

(a+ b)2
fi,j −

i−1∑
k=j+1

fi,k
(a2 + ab− b2)(−b)k−j−1

(a+ b)k−j+2

=
1

a+ b
F

(a,b)
i−j+2 −

a+ 2b

(a+ b)2
F

(a,b)
i−j+1 +

b

(a+ b)2
F

(a,b)
i−j+1 −

1

(a+ b)
F

(a,b)
i−j

=
1

a+ b
F

(a,b)
i−j+2 −

1

a+ b
F

(a,b)
i−j+1 −

1

a+ b
F

(a,b)
i−j

= 0.

Finally, for i = j > 1 we have

vi,i = fi,i−1 · xi−1,i =
1

a+ b
F

(a,b)
2 =

a+ b

a+ b
= 1.

It is obvious that v1,1 = 0, and the proof is completed. □

Lemma 2.3. Let X (a,b)
n = [xi,j ] be n×n matrix defined by (2.4). The following

holds

(2.6) X (a,b)
n · F (a,b,−1)

n = Zn,

where Zn = [zi,j ] is n× n matrix given by

zi,j =

{
1, (i = j, i ̸= n)
0, otherwise.

Proof. The proof can be accomplished in the same way as in previous lemma.
□

Example 2.1. The 6× 6 matrices V6 and Z6 are equal to

V6 =


0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , Z6 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 .

Theorem 2.1. The n × n matrix Xn defined by (2.4) is the Moore-Penrose

pseudoinverse of the matrix F (a,b,−1)
n .



SINGULAR CASE OF GENERALIZED FIBONACCI AND LUCAS MATRICES 39

Proof. Let us denote Fn = F (a,b,−1)
n , Xn = Xn

(a,b,−1). Applying results ob-
tained in Lemma 2.2 it is easy to see that

FnXnFn = VnFn = Fn.

In the same way using the equality (2.6) from Lemma 2.3 we get

XnFnXn = ZnXn = Xn.

The proof can be easily completed verifying remaining two equations from the
Moore-Penrose inverse definition, using simple representations of matrices Vn

and Zn and the fact that they are identical with their conjugate-transpose
matrices. □

In the remaining of the paper we use the following notation F†
n
(a,b,−1)

=

[f†(a,b,−1)
i,j ] for the matrix X (a,b,−1)

n .

3. Generalized Fibonacci matrix and Pascal matrices

Various types of Pascal matrices Pn are investigated in [2], [3], [5], [7], [30],
[31]. In this section we want to investigate correlation between the matrix

F (a,b,−1)
n and Pascal matrices. Since rank(F (a,b,−1)

n ) = n−1 and rank(Pn) = n,
it is not possible to use Pn in the usual manner as in [23], [32], [21]. For this
purpose we introduce the following definition of Pascal matrices of type s.

Definition 3.1. The generalized Pascal matrix of the first kind and of the

type s, denoted by P(s)
n [x] = [p

(s)
i,j [x]], i, j = 1, . . . , n is defined by:

(3.1) p
(s)
i,j [x] =

{
xi−j

(
i−1
j−1

)
, i− j + s ≥ 0,

0, i− j + s < 0.

In the case x = 1 the generalized Pascal matrix of the first kind and of the type

s reduces to Pascal matrix of type s, denoted by P(s)
n = [p

(s)
i,j ], i, j = 1, . . . , n,

and defined as:

(3.2) p
(s)
i,j =

{ (
i−1
j−1

)
, i− j + s ≥ 0,

0, i− j + s < 0.

In the following theorem we define matrix G(−1)
n [x; a, b] = [g

(−1)
i,j (x; a, b)],

i, j = 1, . . . , n which gives a correlation between the generalized Fibonacci

matrix F (a,b,−1)
n and the Pascal matrix P(−1)

n [x].



40 MARKO MILADINOVIĆ AND PREDRAG STANIMIROVIĆ

Example 3.1. The 6× 6 Pascal matrix P(−1)
6 [x] is equal to

P(−1)
6 [x] =



0 0 0 0 0 0

x 0 0 0 0 0

x2 2x 0 0 0 0

x3 3x2 3x 0 0 0

x4 4x3 6x2 4x 0 0

x5 5x4 10x3 10x2 5x 0


.

After we adopt the following two conventions: 00 = 1 and
(
n
k

)
= 0 for k > n,

even in the case k = 0, we are ready to prove the following statements.

Theorem 3.1. The matrix G(−1)
n [x; a, b] = [g

(−1)
i,j (x; a, b)] (x ̸= 0, a ̸= −b),

whose entries are defined by
(3.3)

g
(−1)
i,j (x; a, b)=


x−j

[
1

a+bx
i+1

(
i

j−1

)
− a+2b

(a+b)2x
i
(
i−1
j−1

)
−∑i−1

k=j+1
(−b)i−k−1(a2+ab−b2)

(a+b)i−k+2 xk
(
k−1
j−1

)]
, (i > j, i ̸= n)

i
a+bx, (i = j, i ̸= n)

0, otherwise

satisfies

(3.4) P(−1)
n [x] = F (a,b,−1)

n G(−1)
n [x; a, b].

Proof. Let us denote Fn = F (a,b,−1)
n , F†

n = F†
n
(a,b,−1)

, Pn = P(−1)
n [x] and

Gn = G(−1)
n [x; a, b]. The following hold:

Pn = FnGn =⇒ F†
nPn = F†

nFnGn

=⇒ F†
nPn = ZnGn.

Since all the entries of the last row in matrices F†
nPn and ZnGn are equal to 0,

we have ZnGn = Gn and

Pn = FnGn =⇒ F†
nPn = Gn.

On the other hand the following is valid:

F†
nPn = Gn =⇒ FnF†

nPn = FnGn

=⇒ VnPn = FnGn

=⇒ Pn = FnGn.

Therefore, we get

Pn = FnGn ⇐⇒ F†
nPn = Gn.

Hence, it is sufficient to verify

F†
nPn = Gn.
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It is clear that the last row in both matrices is equal to 0. Also, gi,j =∑
f†
i,kpk,j = 0 for i ≤ j − 1. For i = j we have

[F†
nPn](i,i) = f†

i,i+1pi+1,i =
1

a+ b
xi−i+1

(
i

i− 1

)
=

i

a+ b
x = gi,i.

Finally, for i > j, applying the result from Theorem 2.1 we have the following

[F†
nPn[x]](i,j) =

i−1∑
k=j+1

f†
i,kpk,j + f†

i,ipi,j + f†
i,i+1pi+1,j

= −
i−1∑

k=j+1

(−b)i−k−1(a2 + ab− b2)

(a+ b)i−k+2
xk−j

(
k − 1

j − 1

)

− a+ 2b

(a+ b)2
xi−j

(
i− 1

j − 1

)
+

1

a+ b
xi−j+1

(
i

j − 1

)
= x−j

[
1

a+ b
xi+1

(
i

j − 1

)
− a+ 2b

(a+ b)2
xi

(
i− 1

j − 1

)

−
i−1∑

k=j+1

(−b)i−k−1(a2 + ab− b2)

(a+ b)i−k+2
xk

(
k − 1

j − 1

)
= gi,j

and the proof is completed. □

The theorem above produces a following result in a partial case a = 0, b = 1
and x = 1.

Corollary 3.1. Let Mn be the matrix with elements defined by

mi,j =


(

i
j−1

)
− 2

(
i−1
j−1

)
+
∑i−1

k=j+1(−1)i−k−1
(
k−1
j−1

)
, (i > j, i ̸= n)

i, (i = j, i ̸= n)

0, otherwise.

The Pascal matrix of type −1 and the Fibonacci matrix of type −1 are related

with P(−1)
n = F (−1)

n Mn.

Proof. The proof follows from Mn = G(−1)
n [1; 0, 1]. □

In the case a = 2, b = 1 and x = 1 from Theorem 3.1 we give a corresponding
result for Lucas matrices:

Corollary 3.2. The Pascal matrix and the Lucas matrix satisfy P(−1)
n =

L(−1)
n G(−1)

n [1; 2, 1], where

g
(−1)
i,j (1; 2, 1)=


1
3

(
i

j−1

)
− 4

9

(
i−1
j−1

)
− 5

∑i−1
k=j+1

(−1)i−k−1

3i−k+2

(
k−1
j−1

)
, (i > j, i ̸= n)

i
3 , (i = j, i ̸= n)

0, otherwise.
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Theorem 3.2. The matrix H(−1)
n [x; a, b] = [h

(−1)
i,j (x; a, b)] (x ̸= 0, a ̸= −b),

whose entries are defined by
(3.5)

h
(−1)
i,j (x; a, b) =


xi

[
1

a+bx
−j−1

(
i−1
j−2

)
− a+2b

(a+b)2x
−j

(
i−1
j−1

)
−∑i−1

k=j+1
(−b)k−j−1(a2+ab−b2)

(a+b)k−j+2 x−k
(
i−1
k−1

)]
, (i > j, j ̸= 1)

i−1
a+bx, (i = j, j ̸= 1)

0, otherwise

satisfies

(3.6) P(−1)
n [x] = H(−1)

n [x; a, b]F (a,b,−1)
n .

Proof. Similarly as in Theorem 3.1 we have that the following equalities are
identical

Pn = HnFn ⇐⇒ PnF†
n = Hn.

Hence, it is sufficient to verify

PnF†
n = Hn.

The proof can be completed in the same way as in the proof of Theorem 3.1. □
The theorem above produces the following result in the partial case a = 0,

b = 1 and x = 1.

Corollary 3.3. Let Nn be the matrix with elements defined by

ni,j =


(
i−1
j−2

)
− 2

(
i−1
j−1

)
+

∑i−1
k=j+1(−1)k−j−1

(
i−1
k−1

)
, (i > j, j ̸= 1)

i− 1, (i = j, j ̸= 1)

0, otherwise.

The Pascal matrix and the Fibonacci matrix are related with P(−1)
n = NnF (−1)

n .

Proof. The proof follows from Nn = H(−1)
n [1; 0, 1]. □

In the case a = 2, b = 1 and x = 1 from Theorem 3.2 we give a corresponding
result for Lucas matrices.

Corollary 3.4. The Pascal matrix and the Lucas matrix satisfy P(−1)
n =

H(−1)
n [1; 2, 1]L(−1)

n , where

h
(−1)
i,j (1; 2, 1)=


1
3

(
i−1
j−2

)
− 4

9

(
i−1
j−1

)
− 5

∑i−1
k=j+1

(−1)k−j−1

3k−j+2

(
i−1
k−1

)
, (i > j, j ̸= 1)

i−1
3 , (i = j, j ̸= 1)

0, otherwise.

The generalized Pascal matrix of the second kind and of the type s, denoted

by Q(s)
n [x] = [q

(s)
i,j [x]], i, j = 1, . . . , n, is defined by:

(3.7) q
(s)
i,j [x] =

{
xi+j−2

(
i−1
j−1

)
, i− j + s ≥ 0,

0, i− j + s < 0.



SINGULAR CASE OF GENERALIZED FIBONACCI AND LUCAS MATRICES 43

Theorem 3.3. The matrices

Sn[x; a, b] = [si,j(x; a, b)] and Tn[x, a, b] = [ti,j(x; a, b)],

i, j = 1, . . . , n, (a ̸= −b) whose entries are defined by
(3.8)

si,j(x; a, b) =


xj

[
1

a+bx
i−1

(
i

j−1

)
− a+2b

(a+b)2x
i−2

(
i−1
j−1

)
−∑i−1

k=j+1
(−b)i−k−1(a2+ab−b2)

(a+b)i−k+2 xk−2
(
k−1
j−1

)]
, (i > j, i ̸= n)

i
a+bx, (i = j, i ̸= n)

0, otherwise

(3.9)

ti,j(x; a, b) =


xi

[
1

a+bx
j−3

(
i−1
j−2

)
− a+2b

(a+b)2x
j−2

(
i−1
j−1

)
−∑i−1

k=j+1
(−b)k−j−1(a2+ab−b2)

(a+b)k−j+2 xk−2
(
i−1
k−1

)]
, (i > j, j ̸= 1)

i−1
a+bx, (i = j, j ̸= 1)

0, otherwise

satisfy

Q(−1)
n [x] = F (a,b,−1)

n Sn[x; a, b],

Q(−1)
n [x] = Tn[x; a, b]F (a,b,−1)

n .

Proof. Similar as the proof of Theorem 3.1. □

Corollary 3.5. In the case a ̸= −b the matrix G(−1)
n [− b

a+b ; a, b] is defined by

(3.10)

g
(−1)
i,j =



(−b)i−j−1

(a+b)i−j+2

[
b2
(

i
j−1

)
+ b(a+ 2b)

(
i−1
j−1

)
−

−(a2 + ab− b2)
((

i−1
j

)
− 1

)]
, (i > j, i ̸= n)

− bi
(a+b)2 , (i = j, i ̸= n)

0, otherwise

and satisfies

(3.11) P(−1)
n [−b/(a+ b)] = F (a,b,−1)

n G(−1)
n [−b/(a+ b); a, b] .

Proof. Follows from Theorem 3.1 and the following simple combinatorial iden-
tity

i−1∑
k=j+1

(
k − 1

j − 1

)
=

(
i− 1

j

)
− 1.

□
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Corollary 3.6. The matrix Sn

[
− b

a+b ; a, b
]
(a ̸= −b) is defined by

(3.12) si,j =



(−b)i+j−3

(a+b)i+j

[
b2
(

i
j−1

)
+ b(a+ 2b)

(
i−1
j−1

)
−

−(a2 + ab− b2)
((

i−1
j

)
− 1

)]
, (i > j, i ̸= n)

− bi
(a+b)2 , (i = j, i ̸= n)

0, otherwise

and satisfies

(3.13) Q(−1)
n [−b/(a+ b)] = F (a,b,−1)

n Sn[−b/(a+ b); a, b].

4. Some combinatorial identities

In this section we investigate some combinatorial identities involving the
generalized Fibonacci numbers.

Theorem 4.1. Let i, j be positive integers satisfying i ≥ j + 3 and a ̸= −b.
The following is valid(

−b

a+ b

)i−j (
i− 1

j − 1

)
= − F

(a,b)
i−j+1

bi

(a+ b)2
+ F

(a,b)
i−j

bj

2(a+ b)3
[2a+ (5 + j)b]

+

i−1∑
k=j+2

F
(a,b)
i−k+1

(−b)k−j−1

(a+ b)k−j+2

[
b2
(

k

j − 1

)
+ b(a+ 2b)

(
k − 1

j − 1

)

−(a2 + ab− b2)

((
k − 1

j

)
− 1

)]
.

Proof. From (3.10) we derive the following identities:

g
(−1)
j,j

(
− b

a+ b
; a, b

)
= − bi

(a+ b)2
,

g
(−1)
j+1,j

(
− b

a+ b
; a, b

)
=

b

(a+ b)3

[
b
j(j + 1)

2
+ (a+ 2b)j

]
=

bj

2(a+ b)3
[bj + 5b+ 2a]

=
bj

2(a+ b)3
[2a+ (5 + j)b].

Now, the proof can be derived applying the last, and the following identity

p
(−1)
i,j

[
− b

a+ b

]
=

{ (
− b

a+b

)i−j (
i−1
j−1

)
, i− j − 1 ≥ 0,

0, i− j − 1 < 0

together with (3.10), (3.11) and (1.4). □
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Theorem 4.2. If i, j are positive integers satisfying i ≥ j + 3 and a ̸= −b we
have (

− b

a+ b

)i+j−2 (
i− 1

j − 1

)
= − F

(a,b)
i−j+1

bi

(a+ b)2
− F

(a,b)
i−j

b2j−2j

2(a+ b)2j+1
[2a+ (5 + j)b]

+
i−1∑

k=j+2

F
(a,b)
i−k+1

(−b)k+j−3

(a+ b)k+j

[
b2
(

k

j − 1

)
+ b(a+ 2b)

(
k − 1

j − 1

)

−(a2 + ab− b2)

((
k − 1

j

)
− 1

)]
.

Proof. From (3.12) we derive the following identities:

sj,j

(
− b

a+ b
; a, b

)
= − bj

(a+ b)2
,

sj+1,j

(
− b

a+ b
; a, b

)
=

−b2j−2

(a+ b)2j+1

[
b
j(j + 1)

2
+ (a+ 2b)j

]
=

−b2j−2j

2(a+ b)2j+1
[bj + 5b+ 2a]

=
−b2j−2j

2(a+ b)2j+1
[2a+ (5 + j)b].

Now, the proof can be derived using the last identity, following equality

q
(−1)
i,j

[
− b

a+ b

]
=

{ (
− b

a+b

)i+j−2 (
i−1
j−1

)
, i− j − 1 ≥ 0

0, i− j − 1 < 0

as well as (3.12), (3.13) and (1.4). □

Theorem 4.3. For 1 ≤ r < n and a ̸= −b we have
(4.1)(

n− 1

r − 1

)
= F

(a,b)
n−r+1

r

a+ b

+

n−1∑
l=r+1

F
(a,b)
n−l+1

[
1

a+ b

(
l

r − 1

)
− a+ 2b

(a+ b)2

(
l − 1

r − 1

)

−
l−1∑

k=r+1

(−b)l−k−1(a2 + ab− b2)

(a+ b)l−k+2

(
k − 1

r − 1

)]
.
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Proof. In the partial case x = 1 from (3.3) we get

g
(−1)
i,j (1; a, b) =



[
1

a+b

(
i

j−1

)
− a+2b

(a+b)2

(
i−1
j−1

)
−∑i−1

k=j+1
(−b)i−k−1(a2+ab−b2)

(a+b)i−k+2

(
k−1
j−1

)]
, (i > j, i ̸= n)

i
a+b , (i = j, i ̸= n)

0, otherwise.

Now, the proof follows from(
n− 1

r − 1

)
= p(−1)

n,r =
n−1∑
l=r

F
(a,b)
n−l+1 · g

(−1)
l,r (1; a, b).

□

In the particular case a = 0, b = 1 previous theorem reduces to:

Corollary 4.1. For 1 ≤ r < n(
n− 1

r − 1

)
= F

(a,b)
n−r+1 · r +

n−1∑
l=r+1

F
(a,b)
n−l+1

[(
l

r − 1

)
− 2

(
l − 1

r − 1

)
−

l−1∑
k=r+1

(−b)l−k

(
k − 1

r − 1

)]
.

Proof. The proof follows directly from Theorem 4.3. □

5. Test matrices for computing pseudoinverse

In this section we define a set of test matrices for computing the Moore-

Penrose inverse. These test matrices are generalized Fibonacci matrices F (a,b,s)
n ,

s = −1, defined earlier in this paper, and can be considered as a continuation
of the previous report in [33].

Pseudoinverse of generalized Fibonacci matrices F (a,b,s)
n , s = −1 is defined

in (2.4).

Example 5.1. The 6× 6 matrix F†
6

(a,b,−1)
is equal to

F†
6

(a,b,−1)
=



0 1
a+b 0 0 0 0

0 − a+2b
(a+b)2

1
a+b 0 0 0

0 − (a2+ab−b2)
(a+b)3 − a+2b

(a+b)2
1

a+b 0 0

0 b(a2+ab−b2)
(a+b)4 − (a2+ab−b2)

(a+b)3 − a+2b
(a+b)2

1
a+b 0

0 − b2(a2+ab−b2)
(a+b)5

b(a2+ab−b2)
(a+b)4 − (a2+ab−b2)

(a+b)3 − a+2b
(a+b)2

1
a+b

0 0 0 0 0 0


.

6. Conclusion

Properties, inverse and combinatorial identities for generalized Fibonacci
matrices in regular cases s = 0 and s = 1 are investigated in [23]. At this

moment we consider singular matrices F (a,b,s)
n , s < 0 with a special view

on s = −1. Instead of the usual matrix inverse, we use the Moore-Penrose
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pseudoinverse. We compute the pseudoinverse of generalized Fibonacci matrix

F (a,b,−1)
n . Using these results, a correlation between the matrix F (a,b,−1)

n and
the Pascal matrix of the first and the second kind is derived. Later we get some
combinatorial identities involving generalized Fibonacci numbers and binomial
coefficients. A class of test matrices for computing the Moore-Penrose inverse
is given.
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