• Title/Summary/Keyword: generalized fading channels

Search Result 21, Processing Time 0.021 seconds

Closed-Form Expressions for Selection Combining System Statistics over Correlated Generalized-K Fading Channels in the Presence of Interference

  • Nikolic, Bojana Z.;Stefanovic, Mihajlo C.;Panic, Stefan R.;Anastasov, Jelena A.;Milosevic, Borivoje
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.320-325
    • /
    • 2011
  • This paper considers the effects of simultaneous correlated multipath fading and shadowing on the performances of a signal-to-interference ratio (SIR)-based dual-branch selection combining (SC) diversity receiver. This analysis includes the presence of cochannel interference. A generalized fading/shadowing channel model in an interference-limited correlated fading environment is modeled by generalized-K distribution. Closed-form expressions are obtained for probability density function and cumulative distribution function of the SC output SIR, as well as for the outage probability. Based on this, the influence of various fading and shadowing parameter values and the correlation level on the outage probability is examined.

Novel Trellis-Coded Spatial Modulation over Generalized Rician Fading Channels

  • Zhang, Peng;Yuan, Dongfeng;Zhang, Haixia
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.900-910
    • /
    • 2012
  • In this paper, a novel trellis-coded spatial modulation (TCSM) design method is presented and analyzed. Inspired by the key idea of trellis-coded modulation (TCM), the detailed analysis is firstly provided on the unequal error protection performance of spatial modulation constellation. Subsequently, the Ungerboeck set partitioning rule is proposed and applied to develop a general method to design the novel TCSM schemes. Different from the conventional TCSM approaches, the novel one based on the Ungerboeck set partitioning rule has similar properties as the classic TCM, which has simple but effective code design criteria. Moreover, the novel designed schemes are robust and adaptive to the generalized Rician fading channels, which outperform the traditional TCSM ones. For examples, the novel 4-, 8-, and 16-state TCSM schemes are constructed by employing different transmit antennas and different modulation schemes in different channel conditions. Simulation results clearly demonstrate the advantages of the novel TCSM schemes over the conventional ones.

On the Ergodic Capacity of STBCs from GCIODs over Nakagami-m Fading Channels (Nakagami-m 페이딩 채널에서 GCIODs로 얻은 STBCs의 에르고딕 용량에 대한 연구)

  • Lee, Hoo-Jin;Chung, Young-Mo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5C
    • /
    • pp.415-422
    • /
    • 2010
  • In this paper, we derive exact closed-form formulas, in terms of Meijer's G-function, for the ergodic capacity of space-time block codes (STBCs) from generalized linear complex orthogonal designs (GLCODs) and generalized coordinate interleaved orthogonal designs (GCIODs) in quasi-static frequency-nonselective i.i.d. Nakagami-m fading channels. The derived analytical results show an excellent agreement with Monte-Carlo simulation results. Thus, a useful means for analyzing and predicting the ergodic capacity performance of STBCs from GLCODs or GCIODs can be provided in various antenna configurations and different channel conditions without extensive Monte-Carlo simulations. We present some numerical results to verify the accuracy of the derived formulas.

Generalized Principal Ratio Combining of Space-Time Trellis Coded OFDM over Multi-Path Fading Channels (다중 경로 채널에서 공간-시간 트렐리스 부호화된 OFDM의 일반화된 준최적 검파)

  • Kim, Young-Ju
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.352-357
    • /
    • 2008
  • We present a space-time trellis coded OFDM system in slow fading channels. Generalized principal ratio combining (GPRC) is also analyzed theoretically in frequency domain. The analysis shows that the decoding metric of GPRC includes the metrics of maximum likelihood(ML) and PRC. The computer simulations with M-PSK modulation are obtained in frequency flat and frequency selective fading channels. The decoding complexity and simulation running times are also evaluated among the decoding schemes.

Bit Error Probability of Noncoherent M-ary Orthogonal Modulation over Generalized Fading Channels

  • Simon, Marvin K.;Alouini, Mohamed-Slim
    • Journal of Communications and Networks
    • /
    • v.1 no.2
    • /
    • pp.111-117
    • /
    • 1999
  • Using a method recently reported in the literature for analyzing the bit error probability (BEP) performance of noncoherent Mary orthogonal signals with square-law combining in the presence of independent and identically distributed Nakagami-m faded paths, we are able to reformulate this method so as to apply to a generalized fading channel in which the fading in each path need not be identically distributed nor even distributed ac-cording to the same family of distribution. The method leads to exact expressions for the BEP in the form of a finite-range integral whose integrand involves the moment generating function of the combined signal-to-noise ratio and which can therefore be readily evaluated numerically. The mathematical formalism is illustrated by applying the method to some selected numerical examples of interest showing the impact of the multipath intensity profile (MIP) as well as the fading correlation profile (FCP) on the BEP performance of M-ary orthogonal signal over Nakagami-m fading channels. Thses numerical results show that both MIP and FCP induce a non-negligible degradition in the BEP and have therefore to be taken into account for the accurate prediction of the performance of such systems.

  • PDF

Generalized Distributed Multiple Turbo Coded Cooperative Differential Spatial Modulation

  • Jiangli Zeng;Sanya Liu;Hui Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.999-1021
    • /
    • 2023
  • Differential spatial modulation uses the antenna index to transmit information, which improves the spectral efficiency, and completely bypasses any channel side information in the recommended setting. A generalized distributed multiple turbo coded-cooperative differential spatial modulation based on distributed multiple turbo code is put forward and its performances in Rayleigh fading channels is analyzed. The generalized distributed multiple turbo coded-cooperative differential spatial modulation scheme is a coded-cooperation communication scheme, in which we proposed a new joint parallel iterative decoding method. Moreover, the code matched interleaver is considered to be the best choice for the generalized multiple turbo coded-cooperative differential spatial modulation schemes, which is the key factor of turbo code. Monte Carlo simulated results show that the proposed cooperative differential spatial modulation scheme is better than the corresponding non-cooperative scheme over Rayleigh fading channels in multiple input and output communication system under the same conditions. In addition, the simulation results show that the code matched interleaver scheme gets a better diversity gain as compared to the random interleaver.

Generalized Combined Power and Rate Adaptations in DS/CDMA Communications over Fading Channels (페이딩 채널에서 직접 대역확산 부호분할 다중접속 통신을 위한 일반화된 혼합 전력/전송률 적응화 기법)

  • Lee, Ye Hoon;Kim, Dong Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.680-687
    • /
    • 2013
  • We investigate a generalized combined power and rate adaptation scheme in direct-sequence (DS) code-division multiple-access (CDMA) communications over Nakagami fading channels. The transmission power allocated to user i is proportional to $G^p_i$, where $G_i$ is the channel gain of user i and p is a real number, and the data rate (i.e., spreading gain) is jointly adapted so that a desired QoS is maintained. We analyze the average data rate of the proposed adaptation scheme subject to fixed average and peak transmission power constraints. Our results show that the proposed joint adaptation scheme provides a significant performance improvement over power-only and rate-only adaptation.

Tight Bounds and Invertible Average Error Probability Expressions over Composite Fading Channels

  • Wang, Qian;Lin, Hai;Kam, Pooi-Yuen
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.182-189
    • /
    • 2016
  • The focus in this paper is on obtaining tight, simple algebraic-form bounds and invertible expressions for the average symbol error probability (ASEP) of M-ary phase shift keying (MPSK) in a class of composite fading channels. We employ the mixture gamma (MG) distribution to approximate the signal-to-noise ratio (SNR) distributions of fading models, which include Nakagami-m, Generalized-K ($K_G$), and Nakagami-lognormal fading as specific examples. Our approach involves using the tight upper and lower bounds that we recently derived on the Gaussian Q-function, which can easily be averaged over the general MG distribution. First, algebraic-form upper bounds are derived on the ASEP of MPSK for M > 2, based on the union upper bound on the symbol error probability (SEP) of MPSK in additive white Gaussian noise (AWGN) given by a single Gaussian Q-function. By comparison with the exact ASEP results obtained by numerical integration, we show that these upper bounds are extremely tight for all SNR values of practical interest. These bounds can be employed as accurate approximations that are invertible for high SNR. For the special case of binary phase shift keying (BPSK) (M = 2), where the exact SEP in the AWGN channel is given as one Gaussian Q-function, upper and lower bounds on the exact ASEP are obtained. The bounds can be made arbitrarily tight by adjusting the parameters in our Gaussian bounds. The average of the upper and lower bounds gives a very accurate approximation of the exact ASEP. Moreover, the arbitrarily accurate approximations for all three of the fading models we consider become invertible for reasonably high SNR.

Exact Performance Analysis of AF Based Hybrid Satellite-Terrestrial Relay Network with Co-Channel Interference

  • Javed, Umer;He, Di;Liu, Peilin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3412-3431
    • /
    • 2015
  • This paper considers the effect of co-channel interference on hybrid satellite-terrestrial relay network. In particular, we investigate the problem of amplify-and-forward (AF) relaying in hybrid satellite-terrestrial link, where the relay is interfered by multiple co-channel interferers. The direct link between satellite and terrestrial destination is not available due to masking by surroundings. The destination node can only receive signals from satellite with the assistance of a relay node situated at ground. The satellite-relay link is assumed to follow the shadowed Rice fading, while the channels of interferer-relay and relay-destination links experience Nakagami-m fading. For the considered AF relaying scheme, we first derive the analytical expression for the moment generating function (MGF) of the output signal-to-interference-plus-noise ratio (SINR). Then, we use the obtained MGF to derive the average symbol error rate (SER) of the considered scenario for M-ary phase shift keying (M-PSK) constellation under these generalized fading channels.

The Average SER of MPSK Signals for a Generalized Selection Diversity Combining over Nakagami Fading Channels (나카가미 페이딩 체널에서 일반화된 선택성 다이버시티를 사용한 MPSK 신호의 평균 심벌 오류 확률)

  • Choi, Se-Yeong;Yoon, Dong-Weon;Han, Young-Yearl
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.19-24
    • /
    • 1998
  • In this paper, a new closed form expression for the average symbol error rate(SER) of generalized selection combining(SC), whereby the two(three) signals with the two(three) largest amplitudes are combined from the original diversity branches in the channel, for MPSK signals in a frequency-nonselective slowly m-distributed Nakagami fading channel is derived. In order to analyze the error performance for a generalized SC, the Order-Statistics is applied. To derive the SER of MPSK signals with SC, the new expression of pdf is introduced and many other mathematical methods are used. Comparing the derived SER with that of MRC, we find adequate diversity branch number from total Lth-order diversity branches.

  • PDF