• Title/Summary/Keyword: generalized beta function

Search Result 62, Processing Time 0.023 seconds

ON GENERALIZED EXTENDED BETA AND HYPERGEOMETRIC FUNCTIONS

  • Shoukat Ali;Naresh Kumar Regar;Subrat Parida
    • Honam Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.313-334
    • /
    • 2024
  • In the current study, our aim is to define new generalized extended beta and hypergeometric types of functions. Next, we methodically determine several integral representations, Mellin transforms, summation formulas, and recurrence relations. Moreover, we provide log-convexity, Turán type inequality for the generalized extended beta function and differentiation formulas, transformation formulas, differential and difference relations for the generalized extended hypergeometric type functions. Also, we additionally suggest a generating function. Further, we provide the generalized extended beta distribution by making use of the generalized extended beta function as an application to statistics and obtaining variance, coefficient of variation, moment generating function, characteristic function, cumulative distribution function, and cumulative distribution function's complement.

EXTENDED HYPERGEOMETRIC FUNCTIONS OF TWO AND THREE VARIABLES

  • AGARWAL, PRAVEEN;CHOI, JUNESANG;JAIN, SHILPI
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.4
    • /
    • pp.403-414
    • /
    • 2015
  • Extensions of some classical special functions, for example, Beta function B(x, y) and generalized hypergeometric functions $_pF_q$ have been actively investigated and found diverse applications. In recent years, several extensions for B(x, y) and $_pF_q$ have been established by many authors in various ways. Here, we aim to generalize Appell's hypergeometric functions of two variables and Lauricella's hypergeometric function of three variables by using the extended generalized beta type function $B_p^{({\alpha},{\beta};m)}$ (x, y). Then some properties of the extended generalized Appell's hypergeometric functions and Lauricella's hypergeometric functions are investigated.

GENERALIZED (α, β, γ) ORDER AND GENERALIZED (α, β, γ) TYPE ORIENTED SOME GROWTH PROPERTIES OF COMPOSITE ENTIRE AND MEROMORPHIC FUNCTIONS

  • Tanmay Biswas;Chinmay Biswas
    • The Pure and Applied Mathematics
    • /
    • v.31 no.2
    • /
    • pp.119-130
    • /
    • 2024
  • In this paper we discuss on the growth properties of composite entire and meromorphic functions on the basis of generalized (α, β, γ) order and generalized (α, β, γ) type comparing to their corresponding left and right factors.

A NOTE ON THE INTEGRAL REPRESENTATIONS OF GENERALIZED RELATIVE ORDER (𝛼, 𝛽) AND GENERALIZED RELATIVE TYPE (𝛼, 𝛽) OF ENTIRE AND MEROMORPHIC FUNCTIONS WITH RESPECT TO AN ENTIRE FUNCTION

  • Biswas, Tanmay;Biswas, Chinmay
    • The Pure and Applied Mathematics
    • /
    • v.28 no.4
    • /
    • pp.355-376
    • /
    • 2021
  • In this paper we wish to establish the integral representations of generalized relative order (𝛼, 𝛽) and generalized relative type (𝛼, 𝛽) of entire and meromorphic functions where 𝛼 and 𝛽 are continuous non-negative functions defined on (-∞, +∞). We also investigate their equivalence relation under some certain condition.

LOG-SINE AND LOG-COSINE INTEGRALS

  • Choi, Junesang
    • Honam Mathematical Journal
    • /
    • v.35 no.2
    • /
    • pp.137-146
    • /
    • 2013
  • Motivated essentially by their potential for applications in a wide range of mathematical and physical problems, the log-sine and log-cosine integrals have been evaluated, in the existing literature on the subject, in many different ways. The main object of this paper is to present explicit evaluations of some families of log-sine and log-cosine integrals by making use of the familiar Beta function.

Certain Fractional Integral Operators and Extended Generalized Gauss Hypergeometric Functions

  • CHOI, JUNESANG;AGARWAL, PRAVEEN;JAIN, SILPI
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.3
    • /
    • pp.695-703
    • /
    • 2015
  • Several interesting and useful extensions of some familiar special functions such as Beta and Gauss hypergeometric functions and their properties have, recently, been investigated by many authors. Motivated mainly by those earlier works, we establish some fractional integral formulas involving the extended generalized Gauss hypergeometric function by using certain general pair of fractional integral operators involving Gauss hypergeometric function $_2F_1$, Some interesting special cases of our main results are also considered.

CERTAIN INTEGRAL TRANSFORMS OF EXTENDED BESSEL-MAITLAND FUNCTION ASSOCIATED WITH BETA FUNCTION

  • N. U. Khan;M. Kamarujjama;Daud
    • Honam Mathematical Journal
    • /
    • v.46 no.3
    • /
    • pp.335-348
    • /
    • 2024
  • This paper deals with a new extension of the generalized Bessel-Maitland function (EGBMF) associated with the beta function. We evaluated integral representations, recurrence relation and integral transforms such as Mellin transform, Laplace transform, Euler transform, K-transform and Whittaker transform. Furthermore, the Riemann-Liouville fractional integrals are also discussed.

SOME REMARKS ON THE GROWTH OF COMPOSITE p-ADIC ENTIRE FUNCTION

  • Biswas, Tanmay;Biswas, Chinmay
    • Korean Journal of Mathematics
    • /
    • v.29 no.4
    • /
    • pp.715-723
    • /
    • 2021
  • In this paper we wish to introduce the concept of generalized relative index-pair (𝛼, 𝛽) of a p-adic entire function with respect to another p-adic entire function and then prove some results relating to the growth rates of composition of two p-adic entire functions with their corresponding left and right factors.

SUM AND PRODUCT THEOREMS RELATING TO GENERALIZED RELATIVE ORDER (𝛼, 𝛽) AND GENERALIZED RELATIVE TYPE (𝛼, 𝛽) OF ENTIRE FUNCTIONS

  • Biswas, Tanmay;Biswas, Chinmay;Saha, Biswajit
    • The Pure and Applied Mathematics
    • /
    • v.28 no.2
    • /
    • pp.155-185
    • /
    • 2021
  • Orders and types of entire functions have been actively investigated by many authors. In this paper, we investigate some basic properties in connection with sum and product of generalized relative order (𝛼, 𝛽), generalized relative type (𝛼, 𝛽) and generalized relative weak type (𝛼, 𝛽) of entire functions with respect to another entire function where 𝛼, 𝛽 are continuous non-negative functions on (-∞, +∞).