• 제목/요약/키워드: generalized Sobolev space

검색결과 7건 처리시간 0.021초

LOCAL GENERALIZED SOBOLEV SPACES

  • Kang, Bu-Hyeon
    • 대한수학회지
    • /
    • 제33권3호
    • /
    • pp.481-494
    • /
    • 1996
  • We introduced the generalized Sobolev space $H_\omega^s$ in [4]. In this paper, we introduce the space $H_\omega^s(\Omega)$ of the generalized distributions in $H_\omega^s$ with compact supports in $\Omega$ and the local generalized Sobolev spaces $H_{\omega loc}^s(\Omega)$ of the generalized distributions on $\Omega$ which are locally in $H_\omega^s$ and study their properties.

  • PDF

GENERALIZED SOBOLEV SPACES OF EXPONENTIAL TYPE

  • Lee, Sungjin
    • Korean Journal of Mathematics
    • /
    • 제8권1호
    • /
    • pp.73-86
    • /
    • 2000
  • We study the Sobolev spaces to the generalized Sobolev spaces $H^s_{\mathcal{G}}$ of exponential type based on the Silva space $\mathcal{G}$ and investigate its properties such as imbedding theorem and structure theorem. In fact, the imbedding theorem says that for $s$ > 0 $u{\in}H^s_{\mathcal{G}}$ can be analytically continued to the set {$z{\in}\mathbb{C}^n{\mid}{\mid}Im\;z{\mid}$ < $s$}. Also, the structure theorem means that for $s$ > 0 $u{\in}H^{-s}_{\mathcal{G}}$ is of the form $$u={\sum_{\alpha}\frac{s^{{|\alpha|}}}{{\alpha}!}D^{\alpha}g{\alpha}$$ where $g{\alpha}$'s are square integrable functions for ${\alpha}{\in}\mathbb{N}^n_0$. Moreover, we introduce a classes of symbols of exponential type and its associated pseudo-differential operators of exponential type, which naturally act on the generalized Sobolev spaces of exponential type. Finally, a generalized Bessel potential is defined and its properties are investigated.

  • PDF

DIRICHLET EIGENVALUE PROBLEMS UNDER MUSIELAK-ORLICZ GROWTH

  • Benyaiche, Allami;Khlifi, Ismail
    • 대한수학회지
    • /
    • 제59권6호
    • /
    • pp.1139-1151
    • /
    • 2022
  • This paper studies the eigenvalues of the G(·)-Laplacian Dirichlet problem $$\{-div\;\(\frac{g(x,\;{\mid}{\nabla}u{\mid})}{{\mid}{\nabla}u{\mid}}{\nabla}u\)={\lambda}\;\(\frac{g(x,{\mid}u{\mid})}{{\mid}u{\mid}}u\)\;in\;{\Omega}, \\u\;=\;0\;on\;{\partial}{\Omega},$$ where Ω is a bounded domain in ℝN and g is the density of a generalized Φ-function G(·). Using the Lusternik-Schnirelmann principle, we show the existence of a nondecreasing sequence of nonnegative eigenvalues.

SPECTRAL PROPERTIES OF VOLTERRA-TYPE INTEGRAL OPERATORS ON FOCK-SOBOLEV SPACES

  • Mengestie, Tesfa
    • 대한수학회지
    • /
    • 제54권6호
    • /
    • pp.1801-1816
    • /
    • 2017
  • We study some spectral properties of Volterra-type integral operators $V_g$ and $I_g$ with holomorphic symbol g on the Fock-Sobolev spaces ${\mathcal{F}}^p_{{\psi}m}$. We showed that $V_g$ is bounded on ${\mathcal{F}}^p_{{\psi}m}$ if and only if g is a complex polynomial of degree not exceeding two, while compactness of $V_g$ is described by degree of g being not bigger than one. We also identified all those positive numbers p for which the operator $V_g$ belongs to the Schatten $S_p$ classes. Finally, we characterize the spectrum of $V_g$ in terms of a closed disk of radius twice the coefficient of the highest degree term in a polynomial expansion of g.

IMPROVED STATIONARY $L_p$-APPROXIMATION ORDER OF INTERPOLATION BY CONDITIONALLY POSITIVE DEFINITE FUNCTIONS

  • Yoon, Jung-Ho
    • Journal of applied mathematics & informatics
    • /
    • 제14권1_2호
    • /
    • pp.365-376
    • /
    • 2004
  • The purpose of this study is to show that the accuracy of the interpolation method can be at least doubled when additional smoothness requirements and boundary conditions are met. In particular, as a basis function, we are interested in using a conditionally positive definite function $\Phi$ whose generalized Fourier transform is of the form $\Phi(\theta)\;=\;F(\theta)$\mid$\theta$\mid$^{-2m}$ with a bounded function F > 0.