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GENERALIZED SOBOLEV SPACES 
AND SOME RELATED PROBLEMS

Young Sik Park

고. Introduction

The generalized Sobolev space H% was defined and studied by Pahk 
and Kang [6] using ultradistribution theory of Beurling [1] and Bjorck
[2].  The space H%, with a weight function co possessing some suitable 
properties, is a generalization of the Sobolev space

Paihak [이 studied general Sobolev spaces H*p> 1 < p < oo, as a 
generalization of the space H%. In this case, H铲=H%.

Roumieu 卩이 has also given an ultradistribution theory in which 
growth of derivatives of test functions are restricted by means of certain 
sequences.

A unification of the two theories can be found in Komatsu [4] and 
he derived a lot of results. The Beurling type spaces have been defined 
by Bjorck [2] in terms of a weight funtion 3 : /笋 ——> (0,oo) under 
some assumptions.

Park [8] studied the generalized Sobolev spaces (MQ), Wlp( 
Q;[肱对)and relation between Z)£P(Q; [Mk]) and £)(Q; [Affc]).

In this article we investigate some problems on the space 剧拔(欣)of 
ultradifferentiable functions of class M and that of Whitney
jets of class Af on a compact set K in R”. Also we consider the 
problems on M — (MJ罗 especially when it satisfies (M.2) and (M.3)z.
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2. Some previous results and ultradifferentiable functions

Let M = be a sequence of positive numbers which satisfies 
some of the following conditions with Mq = 1;

(M.l) M읍 MMkHkeN;
(M.2) There are constants K > 0 and H > 1 such that

Mk < KHk min k & No = N U {0};
0<Z<fc

(M.3) There is a constant K > 0 such that

z 스Ml Mk+l
(M.3*

We write =

ooE
k=l

< oo.

—---- ,k 6 TV, and define m(t)
Mk-i

=the number of

mk < = sup log
k

tk 
瓦

Proposition 2.1. Suppose that M = (MQg0 satisfies (M.l). Then,
(1) M(t) = K 끄£0 i.e., 警 =，牛

(2) m(t) + M(t) <
(3) (M.l)《부 {m^} is an increasing sequence,
(4) Mk < and < Mk for j < k.
(5) M(s + t)< M(2s) + M(2i), & t >0.

Proof. They are obvious, for details see Park [7].
We will assume, in addition to (M.l) and (M.3)', that M satisfies 

the following conditions, where A is some positive constant.
(M.4) Mk<AkM3Mk^, 0<j<k.
(M.5) A兹+i < AkM^+1, ke No
(M.6) kMl<{k-X)Mk_rMk+^ k>2.
Note that (M.6) => (M.l) and (M.2) V》(M.4). It is known by Bruna

[3] that the condition (M.4) implies (and is in fact equivalent to the 
statement) that for each q E N there exist Aq and Bq such that
(1) qM(t) < M(Aqt) + constant, t > 0; (2) Mqk < BqM^,k G Nq.
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Theorem 2.2. If for each q W N〉there exists Bg such that Mqk < 
BqM£, then there exists Aq such that qM(f) < t > 0.

1
Proof. Let Aq = sup Bqk, 난leu

k

qM(£) = q sup log —— < sup log —我—< sup log (二) =M(4q£).
k Mk k Mqk k Mk

The condition (M.5) and (4) in Proposition 2.1 imply that 7服+1 < 
i 1

< Arrtk and and are the same order. It also implies that 
m(t) and M(t) are of the same order in the sense that, together with 
m(t) < M(et) , we also have M(t) < Am(Bft) < AM(Bt) for some 
constants A, Bf > 0, where B = eBf.

Proposition 2.3.
(1) (M.6) 스〉^Mk 也 increasing.
(2) (M.6) imphes (»2 <

i.e., Nk = 쓸普 is logarithmically convex. The converse is not 
true in genera,!.

(3) (M.4) implies N* < AkN3Nk-3-
i e., Nk satisfies condition (M.4). The converse is not true in 
general.

(4) (M 5) imphes M AkN《+J
i.e., Nk satisfies condition (M.5). The converse is not true in 
general.

Proof. They are obvious.

Suppose M = (Mfc)o° satisfies (M.l) and (M.3)z. Let E'mC-R71) be 
the space of functions f G C°°(7?n) such that, for every compact set 
K in Rn,

PkM =，談 短序成 = (으严 • • •(£；)“"，

is finite for some h > Q. The condition (M.3)' guarantees that E^f(Rri) 
is a non quasi-analytic class (see Mandelbrojt [5]).
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Theorem 2.4. The space Em(丑")of ultradifferentiable functions 
of class M is a Silva space, that is, inductive limit of Frechet spaces 
such that the canonical mappings are compact.

Proof. We define for j e N, E^(Rn) - {/ G : for every
compact set K in 欣，Pk,#) < oo}, where the topology in 剧七(丘”) 
is defined by, for an increasing sequence {Kz} of compact sets such that 
UKZ = 欣，the system of seminorms {Pkzj : i £ TV}.

Then Em,3(R") is a Frechet space and the canonical mappings 
J are compact. Therefore,

EM(Rn)= ind Z而妇tcqEa幻(R”).

3. Non-quasi-analyticity

Suppose that M = (MQ# satisfies (M.l). Integrating by parts, we 
have

(3 1) g湍顼쁵시 = 平/%板
Hence we can prove by (3.1) the Carleman^ theorem: (M.3)z O (1)수우

⑵수우(3)v》(4); ⑴ 顼二1 志 V 8, ⑵ 므粉dX < oo,
⑶ 쓰發由 V oo, ⑷ 斗 V 8・

Also (Af.3)z implies
lim 쓰 = 0°lim 쁘也 = 0=, lim 쓰也 = 0.

fc—>OO t—>OO t t—>OO t

Proposition 3.1. Suppose that M = (71^)3° satisfies (M.l), If 
limkT"흔 = 0, then

(3.2)

(3.3)

Proof. We can show that easily.
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Theorem 3.2. Suppose that M = (Mfc)g0 satisfies (M.l). Then M 
satisfies (肱.3)' if and only if there is a constant A such that

(3-4)

Proof. Suppose that M satisfies (Af.3)z. Then 竺*스 0 as A —> oo.
Hence by setting k = m(t) > 1, we have

8777,0)_ m(t) f°° dm(A) m(t) 寻>

"艾 -厂+ /+。一厂=-L 匕* q=/c+l

1 m(t) .
—— < 一沮+ A.
mq t

Conversely suppose that (3.4) holds. Let m肅 < — • • • — <
rrik + 1. We have again lim入흐4스) = 0. Hence if mk0 < t < 77아” 

then we have
00 [
V —<
談q-

00Eq=/co + l

1
mq

rfm(A)
A

< A.

Theorem 3 3(Komatsu [4] Proposition 4.4). Suppose that M = 
(Af/c)o° satisfies (M.l) Then M satisfies (M.3) if and only if there is a 
constant A such that

(3.5) —fort > mi，

m(시 .~g +件"5

8 ⑶ ( 시 日入 _ 竺El
入2 t

Theorem 3.4. Suppose that M =(丿照修 satisfies (M.l). Then M 
satisfies (M.3) if and only if

(3.6) dm(X)
X fort > mi.

Proof. Since 肾 흐씅* = 흐뽀) + 쁴스), (M.3)。广 警) <

4끄畀 by Theorem 3.3
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PROPOSmON 3.5. Suppose that M = satisHes (M.l) and 
(M.3)'. Then we have the following relations:
(3.7) 「嚟y 华X,

Jo人 t Jo人

(3-8) 。。岑板=哗+「嚟叭 
入 t Jt 入

and hence by (1) or (2) we have
广幣dE「啤dX.
0 人 Jo

By (1) and (2), we have

(3-9)

(3.10)

P^oof. By simple^calculating we can show the relations.

伫叫严(시 g rwwnCA)^
o 人 Jt X

叫8 쁴쉬 d 人 + 為 哗』人 - 皿 C 쁴斗入 

＜（A+l）fZ 畔八

Hence we have the following relation (3.11).
Proposition 3.6. (3.11)<=> (3.12)^ (3.13) => (3.14)： 

zQin , (시 r m(시小 , f°° m(A)(3.11) t I ——dX A I —-—dX + mi I ——dX.
Jt A2 Jmi X Jmi A2

(3.12) t J* ―dX A[M(t) — Af(7?7，i)] + nij j
mi 人

(3.13) t r [쑆d入 < AM(t) + m고 [°° 므써办
Jt 入 Jmt入

for all t > 0.
(3.14) t r 岑板 <(a+i)M(t)+mi r 쓰毕板

Jt 入 Jo A
for all i > 0.

Proof. By (3.8) and (3.9), (3.13)^> (3.14). The others are obvious.
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4. Whitney jets of class M on K

The letters q, j3 will mean multi-indexes in N& For a = (oq, • • • , o;n)) 
we write q! = a】.! •…an! and \a\ = --- 卜 an- Also, a < /3 stands
for at < = 1尸-,n) and, for x E Hn, xa = - - - x^n. Let K be
a compact set in Rl A jet in K is a multisequence F = (/a) of con
tinuous functions fa on K. For a jet F, for x^y E K^z E i?n,m € Nq 
and \a\ < m, we put

(4.1) (T3)(z)= £ 씐#(z —叭

\ct\<771

(4-2) (R^F)Jg)=么(饥一 £ 厶普)(y —"3.

A jet F is called a Whitney jet on K if it satisfies, for all m G and 
I이 < m,

(4-3) l(R岩 F)a(g)|=o(g —g|m 니이)

for x^y G /C, as \x — y\ —> 0. We write C°°(JC) for 나le space of Whitney 
jets on K.

Let Cm(AT),m e Nq, be the space of all m times continuously dif
ferentiable functions on K in the sense of Whitney i.e., Cm(K)= 
{F = (/a; |a| < m) \ F is an array of continuous functions on K 
such that for each \a\ < m

x — y\ 0 in

Define the norm of F = (/a) € by

II，끼lcm(K) = sup ||J시|c(K)・
|a|<m

Then ||-||cm(K)) is a Banach space. The Frechet space C°°(A?)
is defined by

。8(代)=皿이 1讪 Cm(AT).

豊牆 tends to zero uniform asl
I y\
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Definition 4.1. A jet F = (/a) on K is called a Whitney jet of 
class M if it satisfies the conditions;

(4.4) |/a(x)| < a e Nq, xeK,

(4-5) ….+i
\(R^FMy)\ < B貝二으!彳黑邱+勺办+护弈 K,m e Ph, |a| < m 

{m — I 이 + 1)!

for some constants A^B > Q and some h > 0. We write E^(K} for 
the space of Whitney jets of class M on K.

Bruna [3] showed that Whitney's extension theorem for Fm(-Rn):

Theorem 4.2. Suppose M = (Mk)o° satisfies (M.1),(M.4),(M.5), 
(M.6) and (M.3). Then, for any F e Em(K) there exits f e 
such that DQ/(x) = /a(x) for all a E Nq and x e K.

THEOREM 4.3. For a jet F = (J云)on K, we define

If (x\\
||E||kji = sup ]:-- 卜 inf(B | constant B satisfies (4.5)},

xeK 이 이 
까

E"(K) = {F = (fa) e Em(K) : \\F\\Kyh < oo).

Then Em(K) = indlim九-8 EmjJK).
Proof. If h < 矿 then |成[R九 2 게kw and hence the canon

ical mappings Emji(K) j> Emw(K)are compact and Em(K)= 
indlim 九 _》8 EMyh(K).

Suppose that M = (")8。satisfies (M.1),(M.3)',(M.4),(M.5) and 
十k k」

(M.6). We define M = 쓰) N(t) = sup log —- and H(t) = sup 公，- = 
k Nk k i Mk

expN(L).

Theorem 4.4. Suppose that M =(垃：)8° satisfies (M.l), (M.3) 
and (M.5). E况 each n E N, there exists a sequence {a環} such that

⑴疝恙V 2,昭=I-

(2)碳 < 德k e 际
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where B is a constant that does not depend on n, = 瓷窘，하고d 
A > 1 is a fixed constant in (M.5).

Proof. The construction is simply modified one in [3].
(1) We define

e^Mk for k > n

nk for k <n.

Then — nn < by (M.5). Hence, using (M.3),

夜=<

歹 < V 或M* < 厂七侦쓰丄 - 1

Since Efc<n 治r = Efc<n J = 1, we have (1).
(2) For k > n, (2^ is obvious since H(t} > 1. Since 厶拦 L we have

沖蒜k<n 或Mk
肱*+1
"1

< (m0A)nn<
E V ~^mT J g)，

where m()= min{m e N : m < 焉}，B = *.
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