• 제목/요약/키워드: generalized Cayley graph

검색결과 4건 처리시간 0.02초

GENERALIZED CAYLEY GRAPHS OF RECTANGULAR GROUPS

  • ZHU, YONGWEN
    • 대한수학회보
    • /
    • 제52권4호
    • /
    • pp.1169-1183
    • /
    • 2015
  • We describe generalized Cayley graphs of rectangular groups, so that we obtain (1) an equivalent condition for two Cayley graphs of a rectangular group to be isomorphic to each other, (2) a necessary and sufficient condition for a generalized Cayley graph of a rectangular group to be (strong) connected, (3) a necessary and sufficient condition for the colour-preserving automorphism group of such a graph to be vertex-transitive, and (4) a sufficient condition for the automorphism group of such a graph to be vertex-transitive.

GRAPH CONVERGENCE AND GENERALIZED CAYLEY OPERATOR WITH AN APPLICATION TO A SYSTEM OF CAYLEY INCLUSIONS IN SEMI-INNER PRODUCT SPACES

  • Mudasir A. Malik;Mohd Iqbal Bhat;Ho Geun Hyun
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권1호
    • /
    • pp.265-286
    • /
    • 2023
  • In this paper, we introduce and study a generalized Cayley operator associated to H(·, ·)-monotone operator in semi-inner product spaces. Using the notion of graph convergence, we give the equivalence result between graph convergence and convergence of generalized Cayley operator for the H(·, ·)-monotone operator without using the convergence of the associated resolvent operator. To support our claim, we construct a numerical example. As an application, we consider a system of generalized Cayley inclusions involving H(·, ·)-monotone operators and give the existence and uniqueness of the solution for this system. Finally, we propose a perturbed iterative algorithm for finding the approximate solution and discuss the convergence of iterative sequences generated by the perturbed iterative algorithm.

GENERALIZED CAYLEY GRAPH OF UPPER TRIANGULAR MATRIX RINGS

  • Afkhami, Mojgan;Hashemifar, Seyed Hosein;Khashyarmanesh, Kazem
    • 대한수학회보
    • /
    • 제53권4호
    • /
    • pp.1017-1031
    • /
    • 2016
  • Let R be a commutative ring with the non-zero identity and n be a natural number. ${\Gamma}^n_R$ is a simple graph with $R^n{\setminus}\{0\}$ as the vertex set and two distinct vertices X and Y in $R^n$ are adjacent if and only if there exists an $n{\times}n$ lower triangular matrix A over R whose entries on the main diagonal are non-zero such that $AX^t=Y^t$ or $AY^t=X^t$, where, for a matrix B, $B^t$ is the matrix transpose of B. ${\Gamma}^n_R$ is a generalization of Cayley graph. Let $T_n(R)$ denote the $n{\times}n$ upper triangular matrix ring over R. In this paper, for an arbitrary ring R, we investigate the properties of the graph ${\Gamma}^n_{T_n(R)}$.

CAYLEY-SYMMETRIC SEMIGROUPS

  • Zhu, Yongwen
    • 대한수학회보
    • /
    • 제52권2호
    • /
    • pp.409-419
    • /
    • 2015
  • The concept of Cayley-symmetric semigroups is introduced, and several equivalent conditions of a Cayley-symmetric semigroup are given so that an open problem proposed by Zhu [19] is resolved generally. Furthermore, it is proved that a strong semilattice of self-decomposable semigroups $S_{\alpha}$ is Cayley-symmetric if and only if each $S_{\alpha}$ is Cayley-symmetric. This enables us to present more Cayley-symmetric semi-groups, which would be non-regular. This result extends the main result of Wang [14], which stated that a regular semigroup is Cayley-symmetric if and only if it is a Clifford semigroup. In addition, we discuss Cayley-symmetry of Rees matrix semigroups over a semigroup or over a 0-semigroup.