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GENERALIZED CAYLEY GRAPHS OF

RECTANGULAR GROUPS

Yongwen Zhu

Abstract. We describe generalized Cayley graphs of rectangular groups,
so that we obtain (1) an equivalent condition for two Cayley graphs of
a rectangular group to be isomorphic to each other, (2) a necessary and
sufficient condition for a generalized Cayley graph of a rectangular group
to be (strong) connected, (3) a necessary and sufficient condition for
the colour-preserving automorphism group of such a graph to be vertex-
transitive, and (4) a sufficient condition for the automorphism group of
such a graph to be vertex-transitive.

1. Introduction

The concept of Cayley graphs of groups ([1, 2, 5, 6, 15, 16]) was extended to
that of Cayley graphs of semigroups ([9, 10, 11, 12, 13, 17, 19, 20]). The Cayley
graph Cay(G,S) of a semigroup G relative to a subset S of G is defined as the
graph with vertex set G and edge set E(S) consisting of those ordered pairs
(a, b) such that xa = b for some x ∈ S. This concept was further extended to
that of generalized Cayley graphs of a semigroup by the author in [24]. Recall
that if S is an ideal of a semigroup T , then we call T an ideal extension of
S. Let T be an ideal extension of a semigroup S and ρ ⊆ T 1 × T 1, where
T 1 stands for the semigroup T with identity adjoined if necessary. As in [22,
24, 25, 26], the generalized Cayley graph Cay(S, ρ) of S relative to ρ is defined
as the graph with vertex set S and edge set E(Cay(S, ρ)) consisting of those
ordered pairs (a, b) such that xay = b for some (x, y) ∈ ρ. Some combinatorial
properties related to generalized Cayley graphs of semigroups were investigated
in [25], where the author suggested to characterize semigroups S such that
Cay(S, Sl) = Cay(S, Sr), where Sl = S1 × {1} and Sr = {1} × S1 are the left
and right universal relations on S1, respectively. This problem was partially
solved by Wang in [22], where it was proved that for any regular semigroup
S, Cay(S, Sl) = Cay(S, Sr) if and only if S is a Clifford semigroup, i.e., a
semilattice of groups. This result was further extended by the author in [26].
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Recall that an element e of a semigroup is called an idempotent if e2 = e.
A semigroup is called a band if all elements of it are idempotents. Among all
idempotents of a semigroup there is a natural (partial) order defined by e ≤ f

if and only if ef = fe = e. An idempotent of a semigroup is called primitive if
it is minimal with respect to the natural order within the set of all idempotents
of this semigroup. A band is called a left zero (right zero, rectangular) band if
it satisfies the identity xy = x (resp. xy = y, xyx = x). A semigroup is said
to be (left, right) simple if it has no proper (left, right) ideals. A semigroup
S is left (right) cancellative if xy = xz (resp. yx = zx) implies y = z for
all x, y, z ∈ S. A semigroup is called a right (left) group if it is right (left)
simple and left (right) cancellative. A direct product of a rectangular band
and a group is called a rectangular group. A simple semigroup is referred to
as completely simple if it contains a primitive idempotent. Using [8, Theorem
3.3.1], one may prove easily that every rectangular group is a completely simple
semigroup.

The usual Cayley graphs of some semigroups related to groups such as right
(left) groups, rectangular groups and Clifford semigroups have been investi-
gated in [17, 18, 19, 20]. Rectangular group congruences on a semigroup were
characterized in [4]. Also, Cayley graphs of rectangular groups were character-
ized in [14, 17], and Cayley graphs of strong semilattices of rectangular groups
were investigated in [7]. The present paper is devoted to generalized Cayley
graphs of a rectangular group so that the transitivity, connectivity and the
isomorphism problem of generalized Cayley graphs of a rectangular group are
described.

The paper is organized as follows: We first introduce some related basic
knowledge for preliminaries in Section 2, and then we establish some funda-
mental properties of generalized Cayley graphs of a rectangular group in Sec-
tion 3. In Section 4, we discuss the connectivity of generalized Cayley graphs
of rectangular groups so that a necessary and sufficient condition for a general-
ized Cayley graph of a rectangular group to be (strong) connected is given, see
Theorem 4.3. In Section 5, we discuss the isomorphism problem of generalized
Cayley graphs of rectangular groups so that we obtain some equivalent condi-
tions under which two generalized Cayley graphs of a rectangular group to be
isomorphic to each other, see Theorem 5.4. At last, in Section 6, we describe
the vertex-transitivity of generalized Cayley graphs of a rectangular group and
the main results of this section are Theorems 6.1 and 6.2.

2. Preliminaries

In this section, we introduce a few related notions, notation and simple
facts on graphs, groups and semigroups, which are required for our further
discussion. For more basic knowledge on Semigroup Theory, Group Theory
and Graph Theory, we refer the reader to [8], [21] and [23], respectively.
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Let D(V,E) be a graph with vertex set V and edge set E ⊆ V ×V . If U ⊆ V ,
then the subgraph of D induced by U is defined as the graph with vertex set
U and edge set {(u1, u2) |u1, u2 ∈ U and (u1, u2) ∈ E}. Sometimes we equate
the subgraph of D induced by U with the vertex set U . An subgraph of D
induced by U is called a strong subgraph of D if whenever u ∈ U and (u, v) or
(v, u) ∈ E, we have v ∈ U .

For a graph D(V,E), a mapping φ : V −→ V is called an endomorphism

of the graph D if (φ(u), φ(v)) ∈ E for all (u, v) ∈ E. If φ is not only an
endomorphism of the graph D but also a bijection from V onto V itself and if
φ−1 is also an endomorphism of the graph D, then we call φ an automorphism

of the graph D. The automorphism group and endomorphism monoid of D are
denoted by Aut(D) and End(D), respectively.

A graph D(V,E) is said to be vertex-transitive if, for any two vertices x, y ∈
V , there exists an automorphism φ ∈ Aut(D) such that φ(x) = y (see [1] or
[11]). More generally, a subset A of End(D) is said to be vertex-transitive on
D, and D is said to be A-vertex-transitive if, for any two vertices x, y ∈ V ,
there exists an endomorphism φ ∈ A such that φ(x) = y (see [11]).

Let G be a semigroup with a subset S. As in [11], we denote the au-
tomorphism group (endomorphism monoid) of Cay(G,S) by AutS(G) (resp.
EndS(G)). That is,

AutS(G) = Aut(Cay(G,S)) and EndS(G) = End(Cay(G,S)).

An element φ ∈ EndS(G) is called a colour-preserving endomorphism if sx = y

implies s(φ(x)) = φ(y) for every x, y ∈ G and s ∈ S. If we regard an edge
(x, sx), for s ∈ S, as having ‘colour’ s, so that the elements of S are thought
of as colours associated with the edges of the Cayley graph, then every colour-
preserving endomorphism maps each edge to an edge of the same colour. De-
note by ColEndS(G) (and ColAutS(G)) the set of all colour-preserving endo-
morphisms (resp. automorphisms) of Cay(G,S).

More generally, let T be an ideal extension of a semigroup S and let ρ ⊆
T 1 × T 1. Denote the automorphism group (endomorphism monoid) of the
generalized Cayley graph Cay(S, ρ) by Autρ(S) (resp. Endρ(S)). That is,

Autρ(S) = Aut(Cay(S, ρ)) and Endρ(S) = End(Cay(S, ρ)).

An element φ ∈ Endρ(S) will be called a colour-preserving endomorphism if
sxt = y implies s(φ(x))t = φ(y), for every x, y ∈ S and (s, t) ∈ ρ. Denote by
ColEndρ(S) (and ColAutρ(S)) the sets of all colour-preserving endomorphisms
(resp. automorphisms) of the generalized Cayley graph Cay(S, ρ). Evidently,
with the usual composition of mappings, ColAutρ(S) and ColEndρ(S) are a
group and a monoid, and thus are called the colour-preserving automorphism

group and the colour-preserving endomorphism monoid of Cay(S, ρ), respec-
tively. Let U and W be subgraphs of Cay(S, ρ). We may define a colour-

preserving homomorphism (isomorphism) of U to W in a similar way. If there



1172 YONGWEN ZHU

exists such a homomorphism (isomorphism) of U onto W , then we say that U
is colour-preservingly homomorphic (isomorphic) to W .

Let D = (V,E) be a graph. The underlying undirected graph of D has the
same vertex set V and it has an undirected edge {u, v} for each directed edge
(u, v) of D. The graph D is said to be connected if its underlying undirected
graph is connected. If v0, v1, . . . , vn ∈ V and (vi−1, vi) ∈ E for i = 1, . . . , n,
then the sequence (v0, v1, . . . , vn) is called a directed walk of D of length n. A
directed walk (v0, v1, . . . , vn) is called a cycle of length n (or simply, an n-cycle)
if v0, v1, . . . , vn are distinguished pairwise except that v0 = vn. If, for each pair
of vertices u, v of D, there exists a directed walk from u to v, then D is said to
be strongly connected.

Let G be a group. We always use eG to denote the identity of G. The
trivial subgroup of G is simply denoted by 1, that is, 1 = {eG}. Notice that as
mentioned before, sometimes 1 represents the identity of T 1 for a semigroup
T . If A is a subset of G, then the subgroup generated by A in G is denoted by
〈A〉.

If S is a semigroup with respect to the multiplication ·, then the anti-

semigroup of S, denoted by S∗, is defined as the semigroup (S, ∗), where the
multiplication ∗ is defined by a ∗ b = b ·a for any a, b ∈ S. If G is a group, then
the anti-semigroup G∗ is also a group, called the anti-group of G. Let G be
a group and let ρ ⊆ G × G. Then by [ρ〉 (resp. {ρ〉) we denote the subgroup
(resp. subsemigroup) generated by ρ in the direct product G∗ ×G, where G∗

is the anti-group of G; dually, by 〈ρ] (resp. 〈ρ}) we denote the subgroup (resp.
subsemigroup) generated by ρ in the direct product G×G∗.

If H is a subgroup of a group G, then we write H ≤ G. If H ≤ G and a ∈ G,
then Ha = a−1Ha = {a−1ha |h ∈ H} ≤ G. Let G be a group and H,K ≤ G.
Then for any a ∈ G, put HaK = {hak |h ∈ H, k ∈ K}, called a bi-coset of G
with respect to H and K. The next two lemmas are readily verified.

Lemma 2.1. Let G be a group and H,K ≤ G. Then there exist ai ∈ G, i ∈ I

(where I is an index set) such that

(2.1) G =
˙⋃

i∈I
HaiK.

We call equation (2.1) a bi-coset decomposition of the group G with respect
to its subgroups H and K.

Lemma 2.2. Let G be a group and H,K ≤ G such that Ha ∩K = 1 for some

a ∈ K. Then every element x of HaK can be expressed uniquely as

x = hak

with h ∈ H and k ∈ K.
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3. Fundamental properties of generalized Cayley graphs of

rectangular groups

In the sequel, by L×G×R, we always mean a rectangular group, where L is a
left zero semigroup, R is a right zero semigroup, and G is a group. When saying
that a rectangular group L×G×R has an ideal extension U×P×V , we always
mean that P , U and V are ideal extensions of G, L and R, respectively. In
this section, we shall establish some fundamental properties of the generalized
Cayley graph Cay(S, ρ), where S = L × G × R has an ideal extension T =
U × P × V and where ρ ⊆ T 1 × T 1.

The next two lemmas can be checked by some straightforward computations.

Lemma 3.1. Let S = L×G×R be a rectangular group with an ideal extension

T = U × P × V such that

(3.1) ul = ul′, rv = r′v

for all u ∈ U , v ∈ V , l, l′ ∈ L and r, r′ ∈ R. Let ρ ⊆ T 1 × T 1 and put

(3.2)
ρ∗ = {((ul, heG, vr), (lu

′, eGh
′, rv′)) | ((u, h, v), (u′, h′, v′)) ∈ ρ, l ∈ L, r ∈ R}.

Then ρ∗ ⊆ S × S and Cay(S, ρ) = Cay(S, ρ∗).

Lemma 3.2. Let S = L × G × R be a rectangular group and let ρ ⊆ S × S.

Let li ∈ L, ri ∈ R, gi ∈ G for i = 1, 2. Then the following conditions are

equivalent:

(i) ((l1, g1, r1), (l2, g2, r2)) ∈ E(Cay(S, ρ));
(ii) ((l, g1, r), (l2, g2, r2)) ∈ E(Cay(S, ρ)) for all l ∈ L, r ∈ R;
(iii) ((l2, g1, r2), (l2, g2, r2)) ∈ E(Cay(S, ρ)).

Let l ∈ L, r ∈ R and put

Glr = {l} ×G× {r}.

Then Glr is a group isomorphic to G. Let Elr denote the edge set of the
subgraph of Cay(S, ρ) induced by Glr and put

E′

lr = {((l′, g′, r′), (l, g, r)) | ((l, g′, r), (l, g, r)) ∈ Elr, l
′ ∈ L, r′ ∈ R}.

Then Elr ⊆ E′

lr. According to Lemma 3.2, we immediately deduce the following

Lemma 3.3. Let S = L × G × R be a rectangular group and let ρ ⊆ S × S.

Then

E(Cay(S, ρ)) =
⋃

l∈L

⋃

r∈R

E′

lr.

We use πi to denote the ith projection of a Cartesian product for any index
i. Let S = L×G×R be a rectangular group and let ρ ⊆ S × S. Then we use
πL, πG, πR to denote the projection of L×G×R onto L, G and R, respectively.
Specifically, we have

π1(ρ) = {(l, g, r) | ((l, g, r), (l′, g′, r′)) ∈ ρ},
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π2(ρ) = {(l′, g′, r′) | ((l, g, r), (l′, g′, r′)) ∈ ρ},

πL(π1(ρ)) = {l | (l, g, r) ∈ π1(ρ)},

πG(π1(ρ)) = {g | (l, g, r) ∈ π1(ρ)},

πR(π1(ρ)) = {r | (l, g, r) ∈ π1(ρ)};

and πL(π2(ρ)), πG(π2(ρ)), πR(π2(ρ)) are of similar expressions. Set

H = 〈πG(π1(ρ)〉, the subgroup generated by πG(π1(ρ) in G,
K = 〈πG(π2(ρ)〉, the subgroup generated by πG(π2(ρ) in G.

Since H,K ≤ G and by Lemma 2.1, we have the bi-coset decomposition (2.1) of
G with respect to H and K. For l ∈ L, r ∈ R, equation (2.1) induces naturally
the following bi-coset decomposition of Glr with respect to Hlr and Klr:

(3.3) Glr =
˙⋃

i∈I
Hlr(l, ai, r)Klr ,

where
Hlr = {l} ×H × {r} = H ∩Glr,

Klr = {l} ×K × {r} = K ∩Glr .

Put

M i
lr = Hlr(l, ai, r)Klr for i ∈ I,

ρlr = {((l, g, r′), (l′, g′, r)) ∈ ρ | l′ ∈ L, r′ ∈ R; g, g′ ∈ G}.

By Lemma 3.2, the subgraph of Cay(S, ρ) induced by Glr is exactly the sub-
graph of Cay(S, ρlr) induced by Glr . Furthermore, we obtain:

Lemma 3.4. Let S = L × G × R be a rectangular group and let ρ ⊆ S × S.

Then for any l ∈ L and r ∈ R,

(Glr, Elr) =
˙⋃

i∈I
M i

lr.

For i ∈ I, let Ei
lr denote the edge set of the subgraphs induced by M i

lr and
put

(Ei
lr)

′ = {((l′, g′, r′), (l, g, r)) | ((l, g′, r), (l, g, r)) ∈ Ei
lr, l

′ ∈ L, r′ ∈ R}.

Then

E′

lr =
˙⋃

i∈I
(Ei

lr)
′.

For i ∈ I, set

Si =
⋃

l∈L

⋃

r∈R

M i
lr.

Then

Si = L× (HaiK)×R.

Let Ei denote the edge set of the subgraph of Cay(S, ρ) induced by Si. Then
by Lemma 3.4, we can prove:
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Lemma 3.5. Let S = L × G × R be a rectangular group and let ρ ⊆ S × S.

Let (s1, s2) ∈ E(Cay(S, ρ)). Then s1, s2 ∈ Si for some i ∈ I. That is, (Si, Ei)
is a strong subgraph of Cay(S, ρ) for any i ∈ I.

4. Connectivity of generalized Cayley graphs of rectangular groups

Connectivity of addition Cayley graphs was studied in [6]. In this section
we discuss the connectivity of generalized Cayley graphs of rectangular groups.

Let S = L×G×R be a rectangular group and let ρ ⊆ S×S. As in the last
section, we set

H = 〈πG(π1(ρ))〉 and K = 〈πG(π2(ρ))〉,

where 〈X〉 denotes the subgroup generated by X in the group G. Assume that
Ha ∩ K = 1 for some a ∈ G. By Lemma 2.2, every element x of HaK can
be expressed uniquely as x = hak with h ∈ H and k ∈ K. The subgraph of
Cay(G, ρ) induced by M i

lr = {l} ×HaiK × {r} is connected if and only if, for
any α, β ∈M i

lr, there exists an undirected walk from α to β, that is, there exist

(λk, µk), k = 1, . . . , p such that (λk, µk) ∈ ρlr or (λ−1

k , µ−1

k ) ∈ ρlr, and

β = λp · · ·λ2λ1αµ1µ2 · · ·µp.

Suppose that α = (l, haik, r) and β = (l, h′aik
′, r). Then the above equality is

equivalent to

πG(β) = πG(λp) · · ·πG(λ2)πG(λ1)πG(α)πG(µ1)πG(µ2) · · ·πG(µp),

that is,

h′ · ai · k
′ = πG(λp) · · ·πG(λ2)πG(λ1)(haik)πG(µ1)πG(µ2) · · ·πG(µp)

= πG(λp) · · ·πG(λ2)πG(λ1)h · ai · kπG(µ1)πG(µ2) · · ·πG(µp).

This holds if and only if
{

h′ = πG(λp) · · ·πG(λ2)πG(λ1)h,

k′ = kπG(µ1)πG(µ2) · · ·πG(µp),

which is equivalent to
{

h′h−1 = πG(λp) · · ·πG(λ2)πG(λ1),

k−1k′ = πG(µ1)πG(µ2) · · ·πG(µp),

i.e.,

(h′h−1, k−1k′) = (πG(λp) · · ·πG(λ2)πG(λ1), πG(µ1)πG(µ2) · · ·πG(µp))

= (πG(λ1) ∗ πG(λ2) ∗ · · · ∗ πG(λp), πG(µ1)πG(µ2) · · ·πG(µp))

= (πG(λ1), πG(µ1))(πG(λ2), πG(µ2)) · · · (πG(λp), πG(µp))

∈ H∗ ×K.

Since H and K are groups and α, β are chosen arbitrarily, we see that (h′h−1,
k−1k′) runs over all elements of H∗ × K. Thus the subgraph of Cay(G, ρ)
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induced by M i
lr is connected if and only if H∗ ×K = [ρlr〉, where [ρlr〉 denotes

the subgroup generated by ρlr in the group G∗ ×G, and where G∗ is the anti-
group of G. Similarly, the subgraph of Cay(G, ρ) induced by M i

lr is strong
connected if and only if H∗×K = {ρlr〉, where {ρlr〉 denotes the subsemigroup
generated by ρlr in the group G∗ ×G. So we have proved the following:

Lemma 4.1. Let S = L × G × R be a rectangular group and let ρ ⊆ S × S.

Put

H = 〈πG(π1(ρ))〉 and K = 〈πG(π2(ρ))〉.

Suppose that G has the bi-coset decomposition (2.1) with respect to H and K.

Assume that i ∈ I such that Hai ∩ K = 1. Then for l ∈ L and r ∈ R, the

subgraph of Cay(G, ρ) induced by M i
lr is

(i) connected if and only if H∗ ×K = [ρlr〉, the subgroup generated by ρlr
in G∗ ×G;

(ii) strong connected if and only if H∗ ×K = {ρlr〉, the subsemigroup gen-

erated by ρlr in G∗ ×G.

Lemma 4.1, combining with Lemmas 3.3 and 3.5, implies the following

Lemma 4.2. Under the same assumptions as in Lemma 4.1, the subgraph of

Cay(G, ρ) induced by Si is

(i) connected if and only if H∗ ×K = [ρlr〉 for some l ∈ L and r ∈ R;
(ii) strong connected if and only if H∗×K = {ρlr〉 for all l ∈ L and r ∈ R.

According to Lemmas 3.1, 3.5 and 4.2, we immediately obtain the following
theorem.

Theorem 4.3. Let S = L×G×R be a rectangular group with an ideal extension

T = U × P × V . Assume that condition (3.1) is satisfied. Let ρ ⊆ T 1 × T 1

and let ρ∗ be defined as in equation (3.2). Then the generalized Cayley graph

Cay(G, ρ) is

(i) connected if and only if G = HK and H∗ ×K = [ρ∗lr〉 for some l ∈ L

and r ∈ R;
(ii) strong connected if and only if G = HK and H∗ × K = {ρ∗lr〉 for all

l ∈ L and r ∈ R.

5. Isomorphism problem of generalized Cayley graphs of

rectangular groups

Many research articles studied the isomorphism problem of usual Cayley
graphs of a group or a semigroup, see for example [1, 5, 16]. In this section, we
discuss the same problem for generalized Cayley graphs of rectangular groups.

Lemma 5.1. Let S = L × G × R be a rectangular group and let ρ ⊆ S × S.

Put

H = 〈πG(π1(ρ))〉 and K = 〈πG(π2(ρ))〉.
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Let G have the bi-coset decomposition (2.1) with respect to H and K. If Hai ∩
K = Haj ∩K = 1 for some i, j ∈ I, then for any a ∈ HaiK and b ∈ HajK,

and for any l ∈ L and r ∈ R,

φablr :M i
lr −→M

j
lr, (l, hak, r) 7−→ (l, hbk, r)

is a colour-preserving isomorphism of (M i
lr, E

i
lr) to (M j

lr, E
j
lr), which induces

a colour-preserving isomorphism of (Si, Ei) to (Sj , Ej).

Proof. Take a ∈ HaiK and b ∈ HajK. Then a = h1aik1 and b = h2ajk2 for
some h1, h2 ∈ H and some k1, k2 ∈ K. Since Hai ∩K = 1, we get

Ha ∩K = Hh1aik1 ∩K = Haik1 ∩K = (Hai ∩K)k1 = 1k1 = 1.

Similarly, we getHb∩K = 1. It is clear thatHaiK = HaK andHajK = HbK.
Thus by Lemma 2.1, every element x of HaiK can be expressed uniquely as
x = hak, and also, every element y of HajK can be expressed uniquely as
y = hbk with h ∈ H and k ∈ K. Define a mapping

φab : HaiK −→ HajK, hak 7−→ hbk.

Then φab is well defined and φab(a) = b. It is clear that φab is a bijection,
which induces naturally a bijection

φablr :M i
lr −→M

j
lr, (l, hak, r) 7−→ (l, hbk, r).

Some computations show that φablr is a colour-preserving isomorphism of M i
lr

to M j
lr. It is easily checked that φablr can be naturally extended to a colour-

preserving isomorphism of Si to Sj. This completes the proof. �

Theorem 5.2. Let S = L×G×R be a rectangular group with an ideal extension

T = U × P × V . Assume that condition (3.1) is satisfied. For i = 1, 2, let

ρi ⊆ T 1 × T 1, let ρ∗i be defined as in equation (3.2), and let

Hi = 〈πG(π1(ρ
∗

i ))〉 and Ki = 〈πG(π2(ρ
∗

i ))〉

be such that Ha
i ∩ Ki = 1 for all a ∈ G and that G can be decomposed into

a disjoint union of a same finite number of bi-cosets with respect to Hi and

Ki. Then Cay(S, ρ1) ∼= Cay(S, ρ2) if and only if Cay(L × (H1K1) × R, ρ1) ∼=
Cay(L× (H2K2)×R, ρ2).

Proof. For i = 1, 2, since G can be decomposed into a disjoint union of a
same finite number of bi-cosets with respect to Hi and Ki, there exists a finite
number t such that

G =
˙⋃t

λ=1
Hiai,λKi

for some ai,λ ∈ G. We may assume that a1,1 = a2,1 = eG without loss of
generality. By Lemma 5.1, we obtain that for i = 1, 2 and all λ ∈ {1, 2, . . . , t},

L× (Hiai,λKi)×R ∼= L× (Hiai,1Ki)×R = L× (HiKi)×R.

By Lemma 3.5, Hiai,λKi is a strong subgraph of Cay(S, ρ) for any i and λ. So
the assertion of the theorem follows immediately. �
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We shall use the following condition in the sequel: for any l, l′, x′ ∈ L,
r, r′, y ∈ R and any g, g′ ∈ G,

(5.1)
((l′, g′, r′), (l, g, r)) ∈ ρ

=⇒ there exist x ∈ L, y′ ∈ R such that ((x′, g′, y′), (x, g, y)) ∈ ρ.

It is easily seen that condition (5.1) is equivalent to the following condition:
for any l, l′ ∈ L, r, r′ ∈ R and any (λ, µ) ∈ ρlr, there exists (λ′, µ′) ∈ ρl′r′ such
that

πG(λ) = πG(λ
′), and πG(µ) = πG(µ

′).

Lemma 5.3. Let S = L × G × R be a rectangular group and let ρ ⊆ S × S.

Put

H = 〈πG(π1(ρ))〉 and K = 〈πG(π2(ρ))〉.

Assume that G has the bi-coset decomposition (2.1) with respect to H and K.

If Hai ∩K = Haj ∩K = 1 for some i, j ∈ I and if condition (5.1) is satisfied,

then for any a ∈ HaiK and b ∈ HajK,

φablrl′r′ : M
i
lr −→M

j
l′r′ , (l, hak, r) 7−→ (l′, hbk, r′)

is a graph isomorphism.

Proof. Take any a ∈ HaiK and b ∈ HajK. As in the proof of Lemma 5.1, we
get that HaiK = HaK and HajK = HbK, and that Ha ∩K = Hb ∩K = 1.
By Lemma 2.1, every element x ofHaiK can be expressed uniquely as x = hak,
and also, every element y of HajK can be expressed uniquely as y = hbk with
h ∈ H and k ∈ K. We have the following bijection

φab : HaiK −→ HajK, hak 7−→ hbk.

This induces naturally a bijection

φablrl′r′ :M
i
lr −→ M

j
l′r′ , (l, hak, r) 7−→ (l′, hbk, r′).

Let ((l, hak, r), (l, h′ak′, r)) ∈ Ei
lr. Then there exists (λ, µ) ∈ ρlr such that

λ(l, hak, r)µ = (l, h′ak′, r),

from which we deduce that

πG(λ) · hbk · πG(µ) = h′bk′.

According to condition (5.1), there exists (λ′, µ′) ∈ ρl′r′ such that

πG(λ) = πG(λ
′), and πG(µ) = πG(µ

′).

It follows that
πG(λ

′) · hbk · πG(µ
′) = h′bk′,

which yields that
λ′(l′, hbk, r′)µ′ = (l′, h′bk′, r′).

Hence ((l′, hbk, r′), (l′, h′bk′, r′)) ∈ E
j
l′r′ , i.e.,

(φablrl′r′(l, hak, r), φ
ab
lrl′r′(l, h

′ak′, r)) ∈ E
j
lr .
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We have proved that φablrl′r′ is an isomorphism of the induced graph M i
lr to the

induced graph M j
l′r′ , which completes the proof. �

Using Theorem 5.2 and Lemma 5.3, one may prove the main theorem of this
section:

Theorem 5.4. Let S = L×G×R be a rectangular group with an ideal extension

T = U × P × V . Assume that condition (3.1) is satisfied. For i = 1, 2, let

ρi ⊆ T 1 × T 1, let ρ∗i be defined as in equation (3.2), and let

Hi = 〈πG(π1(ρ
∗

i ))〉 and Ki = 〈πG(π2(ρ
∗

i ))〉

be such that Ha
i ∩ Ki = 1 for all a ∈ G and that G can be decomposed into

a disjoint union of a same finite number of bi-cosets with respect to Hi and

Ki. Suppose that both ρ∗1 and ρ∗2 satisfy condition (5.1). Then the following

statements are equivalent:

(i) Cay(S, ρ1) ∼= Cay(S, ρ2);
(ii) Cay({l} × (H1K1) × {r}, ρ1) ∼= Cay({l} × (H2K2) × {r}, ρ2) for some

l ∈ L and r ∈ R;
(iii) Cay({l}×(H1K1)×{r}, ρ1) ∼= Cay({l}×(H2K2)×{r}, ρ2) for all l ∈ L

and r ∈ R.

6. Vertex-transitivity of generalized Cayley graphs of rectangular

groups

Some kind of transitivity of Cayley graphs of a group was discussed in [2].
There were also some papers on the vertex-transitivity of Cayley graphs of
semigroups ([3, 11, 19, 20]). As main results of Andrei V. Kelarev and Cheryl
E. Praeger in [11], Theorems 2.1 and 2.2 of [11] characterized all semigroups G
and all subsets S of G, satisfying a certain finiteness condition, such that the
usual Cayley graph Cay(G,S) is ColAutS(G)-vertex-transitive and AutS(G)-
vertex-transitive, respectively. These results are invalid for generalized Ceyley
graphs of semigroups in general. In this section, we investigate the vertex-
transitivity of a generalized Cayley graph of a rectangular group. As our main
results of this section, Theorems 6.1 and 6.2 characterize ColAutρ(S)-vertex-
transitivity and Autρ(S)-vertex-transitivity of Cay(S, ρ) respectively, where S
is a rectangular group with a certain ideal extension T and where ρ ⊆ T 1×T 1.

Theorem 6.1. Let S = L×G×R be a rectangular group with an ideal extension

T = U ×P ×V . Assume that condition (3.1) is satisfied. Let ρ ⊆ T 1 ×T 1 and

let ρ∗ be defined as in equation (3.2). Put

H = 〈πG(π1(ρ
∗))〉 and K = 〈πG(π2(ρ

∗))〉.

Assume that Ha ∩ K = 1 for all a ∈ G. Then the generalized Cayley graph

Cay(S, ρ) is ColAutρ(S)-vertex-transitive if and only if S is a group.
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Proof. According to Lemma 3.1, ρ∗ ⊆ S × S and Cay(S, ρ) = Cay(S, ρ∗). So
we may assume that ρ = ρ∗ ⊆ S × S without loss of generality.

The ‘only if ’ part. Assume that Cay(S, ρ) is ColAutρ(S)-vertex-transitive.
Suppose in contrast that S is not a group. Then |L × R| > 1. Take any
edge (α, β) of Cay(S, ρ). Then according to Lemma 3.5, we get α, β ∈ Si for
some i. Set α = (x, h′aik

′, y), β = (l, haik, r). Then there exists (λ, µ) ∈ ρ

such that λαµ = β. It follows that (λ, µ) ∈ ρlr. Since |L × R| > 1, there
exists (l′, r′) ∈ L × R such that (l, r) 6= (l′, r′). Set β′ = (l′, haik, r

′). Then
β′ ∈ Si. It follows that there exists φ ∈ ColAutρ(S) such that φ(β) = β′. Set
φ(α) = α′. By the definition of colour-preserving automorphisms, we get that
λφ(α)µ = φ(β), that is, λα′µ = β′. Since (λ, µ) ∈ ρlr, a simple computation
shows that λα′µ ∈M i

lr, which is a contradiction to that β′ ∈M i
l′r′ . Thus S is

a group.
The ‘if ’ part. Assume that S is a group. Then |L| = |R| = 1. Let L = {l}

and R = {r}. By Lemma 2.1, G has the bi-coset decomposition (2.1) with
respect to H and K. Fix α, β ∈ S. Suppose that α = (l, a, r) and β = (l, b, r)
with a, b ∈ G. Then there exist i, j ∈ I such that a ∈ HaiK and b ∈ HajK.
In view of Lemma 5.1, for any l ∈ L and r ∈ R,

φablr :M i
lr −→M

j
lr, (l, hak, r) 7−→ (l, hbk, r)

is a colour-preserving isomorphism of (M i
lr, E

i
lr) to (M j

lr, E
j
lr); similarly, φbalr is

a colour-preserving isomorphism of (M j
lr, E

j
lr) to (M i

lr, E
i
lr). Next we consider

two cases.
Case 1. i = j. For γ ∈ S, we define

φ(γ) =

{

φablr (γ) if γ ∈ Si(=M i
lr),

γ otherwise.

Then φ ∈ ColAutρ(G) such that φ(α) = β.
Case 2. i 6= j. Then Si and Sj are two disjoint strong subgraphs of Cay(S, ρ)

by Lemma 3.5. In view of Lemma 5.1, there exists a colour-preserving iso-
morphism φablr of Si = M i

lr to Sj = M
j
lr. Also, there is a colour-preserving

isomorphism φbalr of Sj =M
j
lr to Si =M i

lr. For γ ∈ S, we define

φ(γ) =







φablr (γ) if γ ∈ Si,

φbalr (γ) if γ ∈ Sj ,

γ otherwise.

Then φ ∈ ColAutρ(S) such that φ(α) = β. Therefore, the generalized Cayley
graph Cay(S, ρ) is ColAutρ(S)-vertex-transitive and the proof is complete. �

Theorem 6.2. Let S = L×G×R be a rectangular group with an ideal extension

T = U ×P ×V . Assume that condition (3.1) is satisfied. Let ρ ⊆ T 1 ×T 1 and

let ρ∗ be defined as in equation (3.2). Put

H = 〈πG(π1(ρ
∗))〉 and K = 〈πG(π2(ρ

∗))〉.
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Assume that Ha ∩K = 1 for all a ∈ G and suppose that ρ∗ satisfies condition

(5.1). Then the generalized Cayley graph Cay(S, ρ) is Autρ(S)-vertex-transitive.

Proof. First, according to Lemma 3.1, ρ∗ ⊆ S×S and Cay(S, ρ) = Cay(S, ρ∗).
So we may assume that ρ = ρ∗ ⊆ S × S without loss of generality. By Lemma
2.1, G has the bi-coset decomposition (2.1) with respect to H and K, that is,
there exist an index set I and some ai ∈ G for each i ∈ I such that

G =
˙⋃

i∈I
HaiK.

Since ρ∗ satisfies condition (5.1), so does ρ. It follows that Lemma 5.3 applies.
For any a, b ∈ G, l, l′ ∈ L and any r, r′ ∈ R, define a mapping ψab

lrl′r′ : Si −→ Sj

by

ψab
lrl′r′(x, hak, y) =







φablrl′r′(l, hak, r) if (x, y) = (l, r),
φabl′r′lr(l

′, hak, r′) if (x, y) = (l′, r′),
(x, hak, y) otherwise,

where φablrl′r′ is defined as in Lemma 5.3. Let ((x′, h′ak′, y′), (x, hak, y)) ∈ Ei.
Then by Lemma 3.2, ((x, h′ak′, y), (x, hak, y)) ∈ Ei

xy. Consider three cases:

Case 1. (x, y) = (l, r). Then ((l, h′ak′, r), (l, hak, r)) ∈ Ei
lr. By Lemma 5.3,

(φablrl′r′(l, hak, r), φ
ab
lrl′r′(l, h

′ak′, r)) ∈ E
j
l′r′ . But by the definition of ψab

lrl′r′ , we
get that

ψab
lrl′r′(x, hak, y) = φablrl′r′(l, hak, r),

ψab
lrl′r′(x, h

′ak′, y) = φablrl′r′(l, h
′ak′, r).

So we have (ψab
lrl′r′(x, hak, y), ψ

ab
lrl′r′(x, h

′ak′, y)) ∈ Ej .
Case 2. (x, y) = (l′, r′). A similar argument as in Case 1 shows that we also

have (ψab
lrl′r′(x, hak, y), ψ

ab
lrl′r′(x, h

′ak′, y)) ∈ Ej .
Case 3. It is routine to check that (ψab

lrl′r′(x, hak, y), ψ
ab
lrl′r′(x, h

′ak′, y)) ∈ Ej .
Summing up, we have proved that for any a, b ∈ G, l, l′ ∈ L and any r, r′ ∈ R,

ψab
lrl′r′ is an isomorphism of Si to Sj such that ψab

lrl′r′(l, a, r) = (l′, b, r′).
Next, take any α, β ∈ S. Assume that α = (l, a, r) and β = (l, b, r) for some

a, b ∈ G, l, l′ ∈ L and r, r′ ∈ R. Then there exist i, j ∈ I such that a ∈ HaiK

and b ∈ HajK. We consider two cases.
Case 1. i = j. For γ ∈ S, we define

φ(γ) =

{

ψab
lrl′r′(γ) if γ ∈ Si(=M i

lr),
γ otherwise.

Then φ ∈ Autρ(G) such that φ(α) = β.
Case 2. i 6= j. Then Si and Sj are two disjoint strong subgraphs of Cay(S, ρ)

by Lemma 3.5. In view of Lemma 5.1, there exists a colour-preserving iso-
morphism φablr of Si = M i

lr to Sj = M
j
lr. Also, there is a colour-preserving
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isomorphism φbalr of Sj =M
j
lr to Si =M i

lr. For γ ∈ S, we define

φ(γ) =







ψab
lrl′r′(γ) if γ ∈ Si,

ψba(γ) if γ ∈ Sj ,

γ otherwise.

Then φ ∈ Autρ(S) such that φ(α) = β. Therefore, the generalized Cayley
graph Cay(S, ρ) is Autρ(S)-vertex-transitive. This completes the proof. �
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