• 제목/요약/키워드: generalized B curvature tensor

검색결과 4건 처리시간 0.017초

CERTAIN STUDY OF GENERALIZED B CURVATURE TENSOR WITHIN THE FRAMEWORK OF KENMOTSU MANIFOLD

  • Rahuthanahalli Thimmegowda Naveen Kumar;Basavaraju Phalaksha Murthy;Puttasiddappa Somashekhara;Venkatesha Venkatesha
    • 대한수학회논문집
    • /
    • 제38권3호
    • /
    • pp.893-900
    • /
    • 2023
  • In the present study, we consider some curvature properties of generalized B-curvature tensor on Kenmotsu manifold. Here first we describe certain vanishing properties of generalized B curvature tensor on Kenmostu manifold. Later we formulate generalized B pseudo-symmetric condition on Kenmotsu manifold. Moreover, we also characterize generalized B ϕ-recurrent Kenmotsu manifold.

ON WEAKLY CYCLIC GENERALIZED B-SYMMETRIC MANIFOLDS

  • Mohabbat Ali;Aziz Ullah Khan;Quddus Khan;Mohd Vasiulla
    • 대한수학회논문집
    • /
    • 제38권4호
    • /
    • pp.1271-1280
    • /
    • 2023
  • The object of the present paper is to introduce a type of non-flat Riemannian manifold, called a weakly cyclic generalized B-symmetric manifold (W CGBS)n. We obtain a sufficient condition for a weakly cyclic generalized B-symmetric manifold to be a generalized quasi Einstein manifold. Next we consider conformally flat weakly cyclic generalized B-symmetric manifolds. Then we study Einstein (W CGBS)n (n > 2). Finally, it is shown that the semi-symmetry and Weyl semi-symmetry are equivalent in such a manifold.

On Generalized 𝜙-recurrent Kenmotsu Manifolds with respect to Quarter-symmetric Metric Connection

  • Hui, Shyamal Kumar;Lemence, Richard Santiago
    • Kyungpook Mathematical Journal
    • /
    • 제58권2호
    • /
    • pp.347-359
    • /
    • 2018
  • A Kenmotsu manifold $M^n({\phi},\;{\xi},\;{\eta},\;g)$, (n = 2m + 1 > 3) is called a generalized ${\phi}-recurrent$ if its curvature tensor R satisfies $${\phi}^2(({\nabla}_wR)(X,Y)Z)=A(W)R(X,Y)Z+B(W)G(X,Y)Z$$ for all $X,\;Y,\;Z,\;W{\in}{\chi}(M)$, where ${\nabla}$ denotes the operator of covariant differentiation with respect to the metric g, i.e. ${\nabla}$ is the Riemannian connection, A, B are non-vanishing 1-forms and G is given by G(X, Y)Z = g(Y, Z)X - g(X, Z)Y. In particular, if A = 0 = B then the manifold is called a ${\phi}-symmetric$. Now, a Kenmotsu manifold $M^n({\phi},\;{\xi},\;{\eta},\;g)$, (n = 2m + 1 > 3) is said to be generalized ${\phi}-Ricci$ recurrent if it satisfies $${\phi}^2(({\nabla}_wQ)(Y))=A(X)QY+B(X)Y$$ for any vector field $X,\;Y{\in}{\chi}(M)$, where Q is the Ricci operator, i.e., g(QX, Y) = S(X, Y) for all X, Y. In this paper, we study generalized ${\phi}-recurrent$ and generalized ${\phi}-Ricci$ recurrent Kenmotsu manifolds with respect to quarter-symmetric metric connection and obtain a necessary and sufficient condition of a generalized ${\phi}-recurrent$ Kenmotsu manifold with respect to quarter symmetric metric connection to be generalized Ricci recurrent Kenmotsu manifold with respect to quarter symmetric metric connection.

ON GENERALIZED SHEN'S SQUARE METRIC

  • Amr Soleiman;Salah Gomaa Elgendi
    • Korean Journal of Mathematics
    • /
    • 제32권3호
    • /
    • pp.467-484
    • /
    • 2024
  • In this paper, following the pullback approach to global Finsler geometry, we investigate a coordinate-free study of Shen square metric in a more general manner. Precisely, for a Finsler metric (M, L) admitting a concurrent π-vector field, we study some geometric objects associated with ${\widetilde{L}}(x, y)={\frac{(L+{\mathfrak{B}}^2)}L}$ in terms of the objects of L, where ${\mathfrak{B}}$ is the associated 1-form. For example, we find the geodesic spray, Barthel connection and Berwald connection of ${\widetilde{L}}(x,y)$. Moreover, we calculate the curvature of the Barthel connection of ${\tilde{L}}$. We characterize the non-degeneracy of the metric tensor of ${\widetilde{L}}(x,y)$.