• 제목/요약/키워드: general lateral loading

검색결과 41건 처리시간 0.029초

Effect of implant- and occlusal load location on stress distribution in Locator attachments of mandibular overdenture. A finite element study

  • Alvarez-Arenal, Angel;Gonzalez-Gonzalez, Ignacio;deLlanos-Lanchares, Hector;Martin-Fernandez, Elena;Brizuela-Velasco, Aritza;Ellacuria-Echebarria, Joseba
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권5호
    • /
    • pp.371-380
    • /
    • 2017
  • PURPOSE. The aim of this study is to evaluate and compare the stress distribution in Locator attachments in mandibular two-implant overdentures according to implant locations and different loading conditions. MATERIALS AND METHODS. Four three-dimensional finite element models were created, simulating two osseointegrated implants in the mandible to support two Locator attachments and an overdenture. The models simulated an overdenture with implants located in the position of the level of lateral incisors, canines, second premolars, and crossed implant. A 150 N vertical unilateral and bilateral load was applied at different locations and 40 N was also applied when combined with anterior load at the midline. Data for von Mises stresses in the abutment (matrix) of the attachment and the plastic insert (patrix) of the attachment were produced numerically, color-coded, and compared between the models for attachments and loading conditions. RESULTS. Regardless of the load, the greatest stress values were recorded in the overdenture attachments with implants at lateral incisor locations. In all models and load conditions, the attachment abutment (matrix) withstood a much greater stress than the insert plastic (patrix). Regardless of the model, when a unilateral load was applied, the load side Locator attachments recorded a much higher stress compared to the contralateral side. However, with load bilateral posterior alone or combined at midline load, the stress distribution was more symmetrical. The stress is distributed primarily in the occlusal and lateral surface of the insert plastic patrix and threadless area of the abutment (matrix). CONCLUSION. The overdenture model with lateral incisor level implants is the worst design in terms of biomechanical environment for the attachment components. The bilateral load in general favors a more uniform stress distribution in both attachments compared to a much greater stress registered with unilateral load in the load side attachments. Regardless of the implant positions and the occlusal load application site, the stress transferred to the insert plastic is much lower than that registered in the abutment.

사질토에 설치된 강성현장타설말뚝의 극한수평지지력 예측에 관한 재고 (A Review on Ultimate Lateral Capacity Prediction of Rigid Drilled Shafts Installed in Sand)

  • 조남준
    • 한국지반공학회논문집
    • /
    • 제21권2호
    • /
    • pp.113-120
    • /
    • 2005
  • 수평하중을 받는 현장타설말뚝을 합리적이고 경제적으로 설계하기 위해서 가장 중요한 것은 지구조 사이의 상호작용을 이해하는 것이다. 그러나 지난 수십년 동안 수평하중을 받는 깊은 기초의 거동에 대한 많은 연구가 있었음에도 불구하고, 문제의 성격상 삼차원적이며 비대칭성으로 인하여 더해지는 지반고유의 비선형성, 불균일성, 복잡성 때문에 극한수평지지력을 공식화하기란 매우 어렵다 본 연구에서는 특정한 현장조건, 기초의 기하학적 특성(D/B비),하중조건 등에 따른 많은 설계 방법들 중에서 가장 널리 알려진 네 가지의 방법(즉, Reese, Broms, Hansen, 그리고 Davidson)에 대해서 재검토하였다. 그리고 본 연구의 밀환으로 행한 모형실험으로 얻어진 하중-변위곡선을 쌍곡선으로 변환하여 해석된 방곡선수평지지력(H$_h$)과 위의 네 가지 방법들에 의하여 예측되는 극한수평지지력(H$_u$)을 비교하였다. Reese와 Hansen의 방법에 의해 구한 H$_u$ / H$_h$비는 각각 0.966와 1.015로서 실험결과와 매우 근사한 극한수평지지력을 제시하고 있다. 반면에 Davidson의 방법에 의해 구한 H$_u$는 에 비하여 $30\%$ 가량 큰 것으로 예측하고 있으나 네 가지 방법중에서 예측 수평지지력값에 대한 C.O.V.가 가장 작다. 네 가지 방법 중 가장 단순한 Broms의 방법은 H$_u$/ H$_h$: 0.896으로서 네 방법 중에서 극한 수평지지력을 가장 작게 평가하는 것으로 나타나지만 극한수평지지력값을 예측함에 있어서 가장 작은 S.D.를 보인다. 결론적으로, 네 가지의 방법 중 그 어 것도 극한수평지지력을 정확하게 예측한다는 면에서 다른 방법보다 더 우수하다고 할 수는 없다. 또한, 계산과정이 얼마나 정교하거나 복잡한 것과는 상관없이 극한수평지지력을 예측하는데 있어서 신뢰도는 또 다론 문제인 것 같다.

해저지반-구조물 상호작용을 고려한 해상풍력발전타워의 진동특성 (A Study on the vibration characteristics of offshore wind turbine tower including seabed soil-structure interaction)

  • 이정탁;이강수;손충렬;박종빈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.416-422
    • /
    • 2009
  • Offshore wind turbine are subjected to more various loads than general land structures and the stability of structures is supported by the piles driven deeply in the subsoil. So it is more important for offshore structures to consider seabed soil-structure interaction than land structures. And the response of a fixed offshore structure supported by pile foundations is affected by resist dynamics lateral loading due to wave forces and ocean environmental loads. In this study, offshore wind tower response are calculated in the time domain using a finite element package(ANSYS 11.0). Several parameters affecting the vibration characteristics of the natural frequency and mode shape and the tower response have been investigated.

  • PDF

현장탄성파시험을 이용한 강화노반의 시간적 강성 변화 (Temporal Variations of Reinforced Roadbed Stiffness Using In-situ Seismic Tests)

  • 목영진;박철수;임정열;최충락
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.404-411
    • /
    • 2007
  • Reinforced roadbeds are valued from the point of view of maintenance as well as enhanced mechanical capacity. They support more train load and less transmit to the sub-layers than general roadbeds. Also, the lateral sloping surface of the reinforced roadbed and its low permeability, achieved by the controlled compaction, increase drainage capability and prevent the softening of sub-layers. In the study, a series of cross-hole tests was performed to observe the temporal changes in the stiffness of reinforced roadbeds, if any, due to the cyclic loading of trains and alternating rainy and frozen seasons at Pyeong-taek experimental site. The three types of reinforced roadbed materials are slag, crushed stones, and soils, and the thickness of all the reinforced roadbeds is 0.8m. The stiffness of the slag and soil reinforced roadbeds was not changed or slightly decreased. The stiffness of the crushed stone was somewhat increased and is inferred to being densified close to surface.

  • PDF

압력분포 측정시스템의 개발 (Development of a Pressure Distribution Measurement System)

  • 정진호;이기원;김영호
    • 대한의용생체공학회:의공학회지
    • /
    • 제21권2호
    • /
    • pp.213-218
    • /
    • 2000
  • Pressure distributions of the soft tissue are valuable for understanding and diagnosing the disease characteristics due to the mechanical loading. Our system measures dynamic pressure distributions in real-time under the general PC environment, and analyzes various foot disorders. Main features of the developed system are as follows: (1) With the resistive pressure sensor matrix of 40${\times}$40 cells, the data is sent to the PC with the maximum sampling rate of 40 frames/sec. (2) For each frame, contact area, pressure and force are analyzed by graphic forms. Thus, various biomechanical parameters are easily determined at specific areas of interests. (3) A certain stance phase can be chosen for the analysis from the continuous walking, and the detailed biomechanical analysis can be done according to an arbitrary line dividing anterior/posterior or medial/lateral plantar areas. (4) The center of pressure (COP) is calculated and traced from the pressure distribution data, and thus the movement of the COP is monitored in detail. A few experiments revealed that our system successfully measured the dynamic plantar distribution during normal walking.

  • PDF

가압식 쏘일네일링의 지반 굴착면 보강효과 (Effects of Multi-Pressurised Soil Nails in the Underground Excavation)

  • 조재연;이철주;정상섬
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1614-1622
    • /
    • 2008
  • A series of three-dimensional numerical modelling have been conducted to clarify the behaviour of multi-pressurised soil nails with high strength steel pipes. In this study, the soil non-linearity, the soil-nail interaction and staged construction are considered. It has been found that pressurised soil nails can reduce lateral ground movement by 14-21% compared to general soil nails with very low pressure. In addition, ground settlement was reduced when using multi-pressurised soil nails. The pressurised soil nail may result in an increase in the surcharge loading on the ground surface.

  • PDF

구조변수에 의한 튜브 구조의 거동 (Behaviour of Tube Structures in terms of Structural Parameters)

  • 이강건;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.327-334
    • /
    • 2002
  • The global behavior of tube structures (including tube and tube(s)-in-tube constructions) is investigated for the behavioral characteristics of the structures and their performance in relation to the various structural parameters. The stiffness factor in terms of the axial stiffness of the columns and the bending stiffness of both columns and beams is chosen as a parameter to explain the global behavior of the structures. The shear-lag phenomenon is also discussed to explain the general behavior of the structures. Three types of tube structures, with various structural parameters, are analysed for the comparative study, and the results are compared to investigate the structural response and performance of such structures. As a result of the comparison it is obtained that the axial stiffness of the columns is the most important factor governing the response of the tube structures under lateral loading

  • PDF

Evaluation of local and global ductility relationships for seismic assessment of regular masonry-infilled reinforced concrete frames using a coefficient-based method

  • Su, R.K.L.;Tang, T.O.;Lee, C.L.
    • Earthquakes and Structures
    • /
    • 제5권1호
    • /
    • pp.1-22
    • /
    • 2013
  • Soft storey failure mechanism is a common collapse mode for masonry-infilled (MI) reinforced concrete (RC) buildings subjected to severe earthquakes. Simple analytical equations correlating global with local ductility demands are derived from pushover (PO) analyses for seismic assessments of regular MI RC frames, considering the critical interstorey drift ratio, number of storeys and lateral loading configurations. The reliability of the equations is investigated using incremental dynamic analyses for MI RC frames of up to 7 storeys. Using the analytical ductility relationship and a coefficient-based method (CBM), the response spectral accelerations and period shift factors of low-rise MI RC frames are computed. The results are verified through published shake table test results. In general applications, the analytical ductility relationships thus derived can be used to bypass the onerous PO analysis while accurately predicting the local ductility demands for seismic assessment of regular MI RC frames.

블록 끼움벽과 현장타설 끼움벽으로 보강된 비내진 상세 철근콘크리트 골조의 구조성능에 관한 실험적 연구 (An Experimental Study on the Structural Performance of Lightly Reinforced Concrete Frame Retrofitted with Concrete Block and Cast-In Place Infilled Wall)

  • 최창식;이혜연;김선우;윤현도
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권2호
    • /
    • pp.199-206
    • /
    • 2005
  • 끼움벽에 의한 내진보강은 국외에서는 내진 보강공법 중 가장 널리 사용되어지는 신뢰성 있는 공법이나 국내에서는 아직 비내진 상세를 갖는 골조의 내진보강에 대한 분석이 미흡한 실정이다. 따라서 본 연구에서는 재생세골제를 사용한 끼움벽과 현장타설 철근콘크리트 끼움벽의 반복 횡하중 실험을 통하여 끼움벽의 구조성능을 비교분석하였다. 실험결과 두 실험체 모두 기존골조와 비교하여 크게 향상된 성능을 나타냈으며 특히 현장타설 끼움벽 실험체는 순수골조 실험체에 비하여 강도 및 초기강성이 각각 3.8배, 6.6배 향상하며 파괴 시까지 안정적인 거동을 보여 기존골조의 내진보강공법으로 합리적인 것으로 판단되었다.

집중하중을 받는 Grillage의 소성 붕괴하중 산정 및 일반식 도출 (Formulation of General Equations for Plastic Collapse Loads of Grillages under a Lateral Point Load)

  • 홍기섭;김기성
    • 대한조선학회논문집
    • /
    • 제41권6호
    • /
    • pp.91-101
    • /
    • 2004
  • For the grillage which is common types of structures in marine and land-based structural system, the elastic response and design methods are usually applied. However, plastic analysis and design methods are considered Tn those structures to maintain the structural stability at the limit states. In grillage design, the central intersection point load may be used as a worst loading condition. However, a point load may often move around on the grid system. in such case, the worst load point would not necessarily be at the central point. To investigate the variation of plastic collapse load according to the location of moving load between intersections, the plastic collapse loads are obtained for the three types of grillages with simply-supported ends. From the result of each case, it is confirmed that the worst load point is located between intersections. General formulae related with plastic collapse loads for the three groups of grillages with simply-supported boundaries are derived. Those plastic collapse formulae for the grillages are applied to the design of pontoon deck, and optimum design procedure is illustrated. Consequently, general formulae for the plastic collapse of grillages derived from this study can be easily applied to the plastic analysis and optimum design of similar grillages.