• Title/Summary/Keyword: gene mutations

Search Result 1,000, Processing Time 0.027 seconds

A Case of Autosomal Recessive Pseudohypoaldosteronism Type 1 with a Novel Mutation in the SCNN1A Gene (SCNN1A 유전자 변이로 발생한 상염색체 열성 가성 저 알도스테론증 1형 1례)

  • Kim, Su-Yon;Lee, Joo Hoon;Cheong, Hae Il;Park, Young Seo
    • Childhood Kidney Diseases
    • /
    • v.17 no.2
    • /
    • pp.137-142
    • /
    • 2013
  • Pseudohypoaldosteronism (PHA) is a condition characterized by renal salt wasting, hyperkalemia, and metabolic acidosis due to renal tubular resistance to aldosterone. Systemic PHA1 is a more severe condition caused by defective transepithelial sodium transport due to mutations in the genes encoding the ${\alpha}$ (SCNN1A), ${\beta}$ (SCNN1B), or ${\gamma}$ (SCNN1G) subunits of the epithelial sodium channel at the collecting duct, and involves the sweat glands, salivary glands, colon, and lung. Although systemic PHA1 is a rare disease, we believe that genetic studies should be performed in patients with normal renal function but with high plasma renin and aldosterone levels, without a history of potassium-sparing diuretic use or obstructive uropathy. In the present report, we describe a case of autosomal recessive PHA1 that was genetically diagnosed in a newborn after severe hyperkalemia was noted.

Valproic Acid Reduces Reactive Oxygen Species in Fibroblast of X-linked Adrenoleukodystrophy (부신백질형성장애증 섬유모세포에서 발프로산의 항산화능)

  • Kang, Joon Won;Quan, Zhejiu;Jang, Jiho;Kang, Hoon-Chul
    • Journal of the Korean Child Neurology Society
    • /
    • v.23 no.2
    • /
    • pp.45-50
    • /
    • 2015
  • Purpose: X-linked adrenoleukodystrophy (X-ALD) is a fatal, axonal demyelinating, neurodegenerative disease, and is caused by mutations the in ABCD1 (ATP-binding cassette transporter subfamily D member 1). Oxidative damage of proteins caused by very long chain fatty acid accumulating in X-ALD, is an early event in the neurodegenerative cascade. We evaluated valproic acid (VPA) as a possible option for oxidative damage in X-ALD. Method: We generated fibroblast of the childhood cerebral ALD from patient. We evaluated mRNA (ribonucleic acid) level of ABCD2 by real-time polymerase chain reaction, and reactive oxygen species (ROS) levels by flow cytometry. Results: VPA increased expression of ABCD2 in both control and ALD fibroblast. ABCD2 gene mRNA expression was increased 1.76 fold in normal fibroblasts, and 2.22 fold in the X-ALD fibroblasts. ROS levels were decreased in VPA treated X-ALD fibroblast, especially in treated with 1 mM of VPA. ROS levels revealed 13.7 in control fibroblast, on the other hand, 5.83 in X-ALD fibroblast treated with 1 mM of VPA. Conclusion: We propose VPA as a promising novel therapeutic approach in oxidant damage that warrants further clinical investigation in X-ALD.

Early Diagnosis of KBG Syndrome Using Diagnostic Exome Sequencing (Diagnostic exome sequencing을 통한 KBG 증후군의 조기 진단)

  • Hong, Jun Ho;Kim, Se Hee;Lee, Seung Tae;Choi, Jong Rak;Kang, Hoon Chul;Lee, Joon Soo;Kim, Heung Dong
    • Journal of the Korean Child Neurology Society
    • /
    • v.26 no.4
    • /
    • pp.272-275
    • /
    • 2018
  • KBG syndrome is a rare neurodevelopmental disorder characterized by intellectual disability, skeletal anomalies, short stature, craniofacial dysmorphism, and macrodontia. ANKRD11 gene mutation and 16q24.3 microdeletion have been reported to cause KBG syndrome. Here, we report two patients with ANKRD11 mutations who initially presented with neurologic symptoms such as developmental delay and seizures. Patient 1 was a 23-month-old boy who presented with a global developmental delay. Language delay was the most dominant feature. He had hypertelorism, hearing impairment, and behavior problems characterized as hyperactivity. A c.1903_1907delAAACA (p.Lys635GInfsTer26) mutation in ANKRD11 was identified with diagnostic exome sequencing. Patient 2 was a 14-month-old boy with developmental delay and seizure. He also had atrial septum defect, and ventricular septal defect. Generalized tonic seizures began at the age of 8 months. Electroencephalography showed generalized sharp and slow wave pattern. Seizures did not respond to antiepileptic drugs. A loss of function mutation c.5350_5351delTC (p.ser1784HisfsTer12) in ANKRD11 was identified with diagnostic exome sequencing. In both cases, characteristic features of KBG syndrome such as short stature or macrodontia, were absent, and they visited the hospital due to neurological symptoms. These findings suggest that more patients with mild phenotypes of KBG syndrome are being recognized with advances in diagnostic exome sequencing genetic technologies.

Dental Characteristics of Microcephalic Osteodysplastic Primordial Dwarfism Type II (소두증 골형성이상 원발성 왜소증 제 II 형의 치과적 특성)

  • Park, Haemin;Song, Ji-Soo;Shin, Teo Jeon;Hyun, Hong-Keun;Kim, Young-Jae;Lee, Sang-Hoon;Kim, Jung-Wook
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.1
    • /
    • pp.50-63
    • /
    • 2021
  • Microcephalic osteodysplastic primordial dwarfism type II (MOPD II) is an autosomal recessive inherited disorder form of primordial dwarfism, caused by mutations in the pericentrin gene. The purpose of the study was to examine the clinical and radiological features, physicochemical properties and microstructures of the tooth affected with MOPD II. The mandibular 2nd molar was collected from the MOPD II patient. Micro-computerized tomography, scanning electron microscopy, energy dispersive spectrometry and Vickers microhardness analysis were performed on the MOPD II and the normal control. The morphology of the MOPD II tooth appeared to have malformed pulp and root and showed a small size. The mineral density measurement showed that the MOPD II tooth had similar scores in the enamel, but lower scores in the root 1/2 and apical dentin compared to the normal control. The microhardness values were smaller in the cusp enamel, root 1/2 dentin and apical dentin of the MOPD II compared to the normal control. In this study, the dental characteristics and the physicochemical properties of a tooth affected with MOPD II were analyzed to improve understanding of the oral manifestations of the disease and to assist in proper dental treatment by identifying precautions.

Energy metabolism and whole-exome sequencing-based analysis of Sasang constitution: a pilot study

  • Kim, Hyoung Kyu;Lee, Heetak;So, Ji Ho;Jeong, Seung Hun;Seo, Dae Yun;Kim, Jong-Yeol;Kim, Sanguk;Han, Jin
    • Integrative Medicine Research
    • /
    • v.6 no.2
    • /
    • pp.165-178
    • /
    • 2017
  • Background: Traditional Korean Sasang constitutional (SC) medicine categorizes individuals into four constitutional types [Tae-eum (TE), So-eum (SE), Tae-yang (TY), or So-yang (SY)] based on biological and physiological characteristics. As these characteristics are closely related to the bioenergetics of the human body, we assessed the correlation between SC type and energy metabolism features. Methods: Forty healthy, young ($22.3{\pm}1.4$ years) males volunteered to participate in this study. Participants answered an SC questionnaire, and their face shape, voice tone, and body shape were assessed using an SC analysis tool. Thirty-one participants (10 TE, 10 SE, 3 TY, and 8 SY) were selected for further analysis. Collected blood samples were subjected to blood composition analysis, mitochondrial function analysis, and whole-exome sequencing. Results: The SY type showed significantly lower total cholesterol and high-density lipoprotein cholesterol levels than the SE type. Cellular and mitochondrial Adenosine triphosphate (ATP) levels were similar across types. All types showed similar basal mitochondrial oxygen consumption rates, whereas the TE type showed a significantly lower ATP-linked oxygen consumption rate than the other types. Whole-exome sequencing identified several genes variants that were exclusively detected in particular SC types, including 19 for SE, seven for SY, 11 for TE, and six for TY. Conclusion: SC type-specific differences in mitochondrial function and gene mutations were detected in a small group of healthy, young Korean males. These results are expected to greatly improve the accurate screening and utilization of SC medicine.

Genetic Difference Analysis and Environmental Assessment of Miscanthus sinensis and Phragmites australis to Apply Regional Seed for Restoration in Korea (복원 소재로서 지역 종자 적용을 위한 억새와 갈대의 유전적 변이분석)

  • Hong, Sun Hee;Park, Sang Yong;Min, Kyeoung Do;Kim, Jae Yoon
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.463-470
    • /
    • 2018
  • Restoration ecology is the practical study of renewing and restoring a spoilt, degraded, or devastated ecosystems in the environment. Because the Korean industry has been drastically developed for the past few decades, the Korean ecosystem requires restoration using regional seed. In this study, we identified the variation of phylogenic relationship of Miscanthus sinensis or Phragmites australis by locations in Korea. Chloroplast DNA atpF-H and psbA-trnH interspace region were used as a molecular marker to resolve the phylogenic relationship in 10 different locations. We performed the molecular phylogenetic analysis with 10 chloroplast DNAs from each location using Kimura 2-parameter. The analysis of Miscanthus showed that all atpF-H genes were exact matches except for Ose san. In contrast to Mischanthus, the atpF-H genes from Phragmites were observed to have more variation. A total of 7 locations revealed the variation in chloroplast gene. According to the phylogenic tree in Phragmites, 2 of 10 samples in 6 locations and 3 of 10 in 1 location showed variation with 0.160-0.181 genetic distance. According to the genetic distance of the Miscanthus sinensis, there were no mutations in all regions except the Hongsung. These results support regional differences and show the necessity for seed collection by region. In the case of Phragmites australis, genetic variation occurred in all regions.

DENTAL TREATMENT FOR A PATIENT WITH TREACHER COLLINS SYNDROME : CASE REPORT (Treacher Collins 증후군 환아의 치과 치료: 증례보고)

  • Kim, Minji;Song, Ji-Soo;Shin, Teo Jeon;Hyun, Hong-Keun;Kim, Young-Jae;Kim, Jung-Wook;Lee, Sang-Hoon;Jang, Ki-Taeg
    • The Journal of Korea Assosiation for Disability and Oral Health
    • /
    • v.15 no.1
    • /
    • pp.79-83
    • /
    • 2019
  • Treacher Collins syndrome(TCS) is an autosomal craniofacial development disorder which results from mutations in the gene TCOF1. Major features include midface hypoplasia, micrognathia, microtia, conductive hearing loss. Oral manifestations are characterized by cleft palate, shortened soft palate, malocclusion, anterior open bite and enamel hypoplasia. The purpose of this presentation is to describe the interesting aspects of dental treatment of a patient with TCS. A 6-year-old boy with TCS visited Seoul National University Dental Hospital for dental caries. Multiple caries was observed from clinical and radiographic examination. Because of multiple caries and behavior management ploblem, dental treatment under general anesthesia was planned. Treatment of posterior teeth was performed and some primary teeth were extracted. General anesthesia was induced and maintained with sevoflurane, nitrous oxide and oxygen. Under general anesthesia, successful dental procedure was done. Considering behavior management problem and medical condition of patient with TCS, general anesthesia can be useful.

Analysis of Sequence Type and Fluoroquinolone Resistance in Ciprofloxacin-Resistant Escherichia coli (Ciprofloxacin 내성 대장균에서 Sequence Type과 Fluoroquinolone 내성의 분석)

  • Cho, Hye Hyun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.3
    • /
    • pp.217-224
    • /
    • 2021
  • Fluoroquinolone (FQ) resistant gram-negative pathogens have emerged worldwide, and the recent increase in FQ resistant Escherichia coli is of great concern in Korea. This study investigated FQ resistance determinants and the epidemiological relationship of 56 ciprofloxacin-resistant E. coli isolated from a tertiary hospital in Daejeon, South Korea from June to December 2018. Molecular epidemiology was investigated by multilocus sequence typing (MLST). Polymerase chain reaction (PCR) and sequence analysis were performed to identify chromosomal mutations in the quinolone resistance determining regions (QRDR) of gyrA, gyrB, parC, and parE and to describe the occurrence of the following plasmid-mediated quinolone resistance (PMQR) genes: aac(6)-Ib-cr, qepA, qnrA, qnrB, qnrC, qnrD, and qnrS. MLST analysis showed 12 sequence types (STs) and the most prevalent ST was ST131 (31/56, 55.4%), followed by ST1193 (13/56, 23.2%), and ST405 (3/56, 5.4%). In 56 ciprofloxacin-resistant E. coli isolates, Ser83→Leu and Asp87→Asn in gyrA and Ser80→Ile and Glu84→Val in parC (51.8%, 29/56) were the most frequent amino acid substitutions and aac(6)-Ib-cr (33.9%, 19/56) was the most common PMQR gene. These results of FQ resistance determinants were more frequently observed in ST131 compared with other clones. Continuous monitoring of the epidemiological characteristics of ciprofloxacin-resistant E. coli isolates and further investigation of FQ resistance determinants are necessary.

Pathological Factors Affecting DNA Quality in BRAF, EGFR, and KRAS Gene Molecular Tests (BRAF, EGFR, KRAS 유전자 분자병리검사에서 DNA 품질에 영향을 미치는 병리학적인 인자에 관한 연구)

  • Yun, Hyon-Goo;Kim, Bo-Ra;Lee, Joo-Mi;Song, Eun-Ha;Kim, Dong-Hoon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.4
    • /
    • pp.381-388
    • /
    • 2020
  • The quality control of pathological specimens is important for accurate molecular pathology testing. This study evaluated that specimen factors affecting the DNA quality during tissue processing and sample types for BRAF, EGFR, and KRAS mutations tests. One thousand seven hundred and seventy-two molecular pathology tests were investigated for the factors influencing the DNA quality, such as sample type, formalin fixation time, and reexamination status. Cytology samples stored in a saline solution had better DNA quality than commercial cytology preservation. Tissue samples fixed in formalin within 24 hours had better DNA quality than the samples fixed over 24 hours. Between the types of samples, fresh tissue samples and tissue samples with a high tumor cell density had relatively better DNA quality than the formalin-fixed paraffin-embedded (FFPE) tissues and cytology specimens. Of real-time PCR, the non-PNA Ct value increased proportionally with samples held for longer than 24 hours in formalin, and that the formalin-fixed time affects the sample DNA quality. In conclusion, the appropriate tumor cellularity and 10% neutral formalin fixation time are the most important factors for maintaining the DNA quality. These factors should be managed properly for an accurate pathological molecular test to ensure optimal DNA quality.

Determination of Antioxidant Activities and Bioactive Compounds from Rosa rugosa Extract (해당화 추출물의 주요물질 분석에 따른 폴리페놀 함량 및 항산화 활성 탐색)

  • Jun Hee, Kim;Youn Sun, Hwang;Jae Hoon, Park;Min Ho, Kang;Ye Sol, Oh;Jin Woo, Kim
    • Journal of Life Science
    • /
    • v.32 no.11
    • /
    • pp.841-846
    • /
    • 2022
  • The purpose of this study was to evaluate the antioxidant properties of Rosa rugosa extract and to identify which of its components are responsible for these properties. Reactive oxygen species play an important role in diseases such as cancer, arteriosclerosis, and heart disease as a consequence of increased metabolic rates, gene mutations, and relative hypoxia. Therefore, the antioxidant effect of R. rugosa extract was confirmed by HPLC, HPLC-MS/MS, the total polyphenol content, the total flavonoid content, and the radical scavenging activity. HPLC and HPLC-MS/MS analyses were conducted to identify and quantify the main components of the R. rugosa extract. Gallic acid and epigallocatechin gallate were identified as the main components, with 17.4 and 4.35 mg/g dry matter (DM), respectively. The antioxidant activity of R. rugosa extract was evaluated based on its total polyphenol content, total flavonoid content, and radical scavenging activity, which were 72.3 mg gallic acid equivalent/g DM, 11.2 mg quercetin equivalent/g DM, and 87.9%, respectively. The radical scavenging activities of the main components, gallic acid and epigallocatechin gallate, were 80.5% and 89.7%, respectively. Therefore, R. rugosa has a high polyphenol content and antioxidant activity, and it can be used as a natural antioxidant in food, cosmetics, and pharmaceuticals.