• Title/Summary/Keyword: gene modules

Search Result 55, Processing Time 0.026 seconds

Identification of Specific Gene Modules in Mouse Lung Tissue Exposed to Cigarette Smoke

  • Xing, Yong-Hua;Zhang, Jun-Ling;Lu, Lu;Li, De-Guan;Wang, Yue-Ying;Huang, Song;Li, Cheng-Cheng;Zhang, Zhu-Bo;Li, Jian-Guo;Xu, Guo-Shun;Meng, Ai-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권10호
    • /
    • pp.4251-4256
    • /
    • 2015
  • Background: Exposure to cigarette may affect human health and increase risk of a wide range of diseases including pulmonary diseases, such as chronic obstructive pulmonary disease (COPD), asthma, lung fibrosis and lung cancer. However, the molecular mechanisms of pathogenesis induced by cigarettes still remain obscure even with extensive studies. With systemic view, we attempted to identify the specific gene modules that might relate to injury caused by cigarette smoke and identify hub genes for potential therapeutic targets or biomarkers from specific gene modules. Materials and Methods: The dataset GSE18344 was downloaded from the Gene Expression Omnibus (GEO) and divided into mouse cigarette smoke exposure and control groups. Subsequently, weighted gene co-expression network analysis (WGCNA) was used to construct a gene co-expression network for each group and detected specific gene modules of cigarette smoke exposure by comparison. Results: A total of ten specific gene modules were identified only in the cigarette smoke exposure group but not in the control group. Seven hub genes were identified as well, including Fip1l1, Anp32a, Acsl4, Evl, Sdc1, Arap3 and Cd52. Conclusions: Specific gene modules may provide better understanding of molecular mechanisms, and hub genes are potential candidates of therapeutic targets that may possible improve development of novel treatment approaches.

PromoterWizard: An Integrated Promoter Prediction Program Using Hybrid Methods

  • Park, Kie-Jung;Kim, Ki-Bong
    • Genomics & Informatics
    • /
    • 제9권4호
    • /
    • pp.194-196
    • /
    • 2011
  • Promoter prediction is a very important problem and is closely related to the main problems of bioinformatics such as the construction of gene regulatory networks and gene function annotation. In this context, we developed an integrated promoter prediction program using hybrid methods, PromoterWizard, which can be employed to detect the core promoter region and the transcription start site (TSS) in vertebrate genomic DNA sequences, an issue of obvious importance for genome annotation efforts. PromoterWizard consists of three main modules and two auxiliary modules. The three main modules include CDRM (Composite Dependency Reflecting Model) module, SVM (Support Vector Machine) module, and ICM (Interpolated Context Model) module. The two auxiliary modules are CpG Island Detector and GCPlot that may contribute to improving the predictive accuracy of the three main modules and facilitating human curator to decide on the final annotation.

Gene Co-Expression Network Analysis of Reproductive Traits in Bovine Genome

  • Lim, Dajeong;Cho, Yong-Min;Lee, Seung-Hwan;Chai, Han-Ha;Kim, Tae-Hun
    • Reproductive and Developmental Biology
    • /
    • 제37권4호
    • /
    • pp.185-192
    • /
    • 2013
  • Many countries have implemented genetic evaluation for fertility traits in recent years. In particular, reproductive trait is a complex trait and need to require a system-level approach for identifying candidate genes related to the trait. To find the candidate gene associated with reproductive trait, we applied a weighted gene co-expression network analysis from expression value of bovine genes. We identified three co-expressed modules associated with reproductive trait from bovine microarray data. Hub genes (ZP4, FHL2 and EGR4) were determined in each module; they were topologically centered with statistically significant value in the gene co-expression network. We were able to find the highly co-expressed gene pairs with a correlation coefficient. Finally, the crucial functions of co-expressed modules were reported from functional enrichment analysis. We suggest that the network-based approach in livestock may an important method for analyzing the complex effects of candidate genes associated with economic traits like reproduction.

조건(암, 정상)에 따라 특이적 관계를 나타내는 유전자 쌍으로 구성된 유전자 모듈을 이용한 독립샘플의 클래스예측 (Class prediction of an independent sample using a set of gene modules consisting of gene-pairs which were condition(Tumor, Normal) specific)

  • 정현이;윤영미
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권12호
    • /
    • pp.197-207
    • /
    • 2010
  • 대용량(High-throughput) 형태로 얻어진 cDNA 마이크로어레이 데이터에 다양한 데이터 마이닝 기법을 적용하면 서로 다른 조직에서 추출한 유전자의 발현정도를 비교할 수 있고 정상세포와 암세포에서 발현량의 차이를 보이는 DEG(Differently Expression Gene) 유전자를 추출할 수 있다. 이들을 이용하여 병을 진단할 수 있을 뿐만 아니라, 암의 진행 단계(Cancer Stage)에 따른 치료 방법을 결정할 수 있다. 마이크로어레이를 기반으로 한 대부분의 암 분류자는 기계학습 기법을 이용하여 암 관련 유전자를 추출하여, 이들 유전자를 총체적으로 이용하여 독립 샘플의 클래스(암, 정상)를 판정한다. 하지만 유전자의 발현량의 차이뿐만 아니라 유전자와 유전자의 상관관계의 변화가 질병 진단에 활용될 수 있다. 대부분의 질병은 단독 유전자의 변이에 의한 것이 아니라 유전자의 모듈로 이루어진 유전자조절네트워크의 변이에 의한 것이기 때문이다. 본 논문에서는 조건에 따라 특이적 관계를 나타내는 유전자 쌍을 식별하여, 이들 유전자 쌍을 이용한 유전자 분류 모듈을 생성한다. 분류 모듈을 이용한 암 분류 방법이 기존의 암 분류 방법보다 높은 정확도로 암과정상 샘플을 분류함을 보여주고 있다. 분류 모듈을 구성하는 유전자의 수가 상대적으로 적으므로 임상키트로의 개발도 고려할 수 있다. 향후 분류 모듈에 속하는 유전자의 기능적 검증을, GO(Gene Ontology)를 활용함으로서, 밝혀지지 않은 새로운 암 관련 유전자를 식별하고, 분류 모듈을 확대하여 암 특이적 유전자조절네트워크 구성에 활용할 계획이다.

Integrative Analysis of Microarray Data with Gene Ontology to Select Perturbed Molecular Functions using Gene Ontology Functional Code

  • Kim, Chang-Sik;Choi, Ji-Won;Yoon, Suk-Joon
    • Genomics & Informatics
    • /
    • 제7권2호
    • /
    • pp.122-130
    • /
    • 2009
  • A systems biology approach for the identification of perturbed molecular functions is required to understand the complex progressive disease such as breast cancer. In this study, we analyze the microarray data with Gene Ontology terms of molecular functions to select perturbed molecular functional modules in breast cancer tissues based on the definition of Gene ontology Functional Code. The Gene Ontology is three structured vocabularies describing genes and its products in terms of their associated biological processes, cellular components and molecular functions. The Gene Ontology is hierarchically classified as a directed acyclic graph. However, it is difficult to visualize Gene Ontology as a directed tree since a Gene Ontology term may have more than one parent by providing multiple paths from the root. Therefore, we applied the definition of Gene Ontology codes by defining one or more GO code(s) to each GO term to visualize the hierarchical classification of GO terms as a network. The selected molecular functions could be considered as perturbed molecular functional modules that putatively contributes to the progression of disease. We evaluated the method by analyzing microarray dataset of breast cancer tissues; i.e., normal and invasive breast cancer tissues. Based on the integration approach, we selected several interesting perturbed molecular functions that are implicated in the progression of breast cancers. Moreover, these selected molecular functions include several known breast cancer-related genes. It is concluded from this study that the present strategy is capable of selecting perturbed molecular functions that putatively play roles in the progression of diseases and provides an improved interpretability of GO terms based on the definition of Gene Ontology codes.

Identification of the Phenalamide Biosynthetic Gene Cluster in Myxococcus stipitatus DSM 14675

  • Park, Suhyun;Hyun, Hyesook;Lee, Jong Suk;Cho, Kyungyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권9호
    • /
    • pp.1636-1642
    • /
    • 2016
  • Phenalamide is a bioactive secondary metabolite produced by Myxococcus stipitatus. We identified a 56 kb phenalamide biosynthetic gene cluster from M. stipitatus DSM 14675 by genomic sequence analysis and mutational analysis. The cluster is comprised of 12 genes (MYSTI_04318- MYSTI_04329) encoding three pyruvate dehydrogenase subunits, eight polyketide synthase modules, a non-ribosomal peptide synthase module, a hypothetical protein, and a putative flavin adenine dinucleotide-binding protein. Disruption of the MYSTI_04324 or MYSTI_04325 genes by plasmid insertion resulted in a defect in phenalamide production. The organization of the phenalamide biosynthetic modules encoded by the fifth to tenth genes (MYSTI_04320-MYSTI_04325) was very similar to that of the myxalamid biosynthetic gene cluster from Stigmatella aurantiaca Sg a15, as expected from similar backbone structures of the two substances. However, the loading module and the first extension module of the phenalamide synthase encoded by the first to fourth genes (MYSTI_04326-MYSTI_04329) were found only in the phenalamide biosynthetic gene cluster from M. stipitatus DSM 14675.

Expression and Characterization of Trehalose Biosynthetic Modules in the Adjacent Locus of the Salbostatin Gene Cluster

  • Choeng, Yong-Hoon;Yang, Ji-Yeon;Delcroix, Gaetan;Kim, Yoon-Jung;Chang, Yong-Keun;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권10호
    • /
    • pp.1675-1681
    • /
    • 2007
  • The pseudodisaccharide salbostatin, which consists of valienamine linked to 2-amino-1,5-anhydro-2-deoxyglucitol, is a strong trehalase inhibitor. From our Streptomyces albus ATCC 21838 genomic library, we identified thirty-two ORFs in a 37-kb gene cluster. Twenty-one genes are supposed to be a complete set of modules responsible for the salbostatin biosynthesis. Through sequence analysis of the gene cluster, some of the upstream gene products (SalB, SalC, SalD, SalE, and SalF) revealed functional resemblance with trehalose biosynthetic enzymes. On the basis of this rationale, we isolated the five genes (salB, salC, salD, salE, and salF) from the S. albus ATCC 21838 and cloned them into the expression vector pWHM3. We demonstrated the noticeable expression and accumulation of trehalose, using only the five upstream biosynthetic gene cluster of salbostatin, in the transformed Streptomyces lividans TK24. Finally, 490 mg/l trehalose was produced by fermentation of the transformant with sucrosedepleted R2YE media.

Exploration of Molecular Mechanisms of Diffuse Large B-cell Lymphoma Development Using a Microarray

  • Zhang, Zong-Xin;Shen, Cui-Fen;Zou, Wei-Hua;Shou, Li-Hong;Zhang, Hui-Ying;Jin, Wen-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권3호
    • /
    • pp.1731-1735
    • /
    • 2013
  • Objective: We aimed to identify key genes, pathways and function modules in the development of diffuse large B-cell lymphoma (DLBCL) with microarray data and interaction network analysis. Methods: Microarray data sets for 7 DLBCL samples and 7 normal controls was downloaded from the Gene Expression Omnibus (GEO) database and differentially expressed genes (DEGs) were identified with Student's t-test. KEGG functional enrichment analysis was performed to uncover their biological functions. Three global networks were established for immune system, signaling molecules and interactions and cancer genes. The DEGs were compared with the networks to observe their distributions and determine important key genes, pathways and modules. Results: A total of 945 DEGs were obtained, 272 up-regulated and 673 down-regulated. KEGG analysis revealed that two groups of pathways were significantly enriched: immune function and signaling molecules and interactions. Following interaction network analysis further confirmed the association of DEGs in immune system, signaling molecules and interactions and cancer genes. Conclusions: Our study could systemically characterize gene expression changes in DLBCL with microarray technology. A range of key genes, pathways and function modules were revealed. Utility in diagnosis and treatment may be expected with further focused research.

Understanding Disease Susceptibility through Population Genomics

  • Han, Seonggyun;Lee, Junnam;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • 제10권4호
    • /
    • pp.234-238
    • /
    • 2012
  • Genetic epidemiology studies have established that the natural variation of gene expression profiles is heritable and has genetic bases. A number of proximal and remote DNA variations, known as expression quantitative trait loci (eQTLs), that are associated with the expression phenotypes have been identified, first in Epstein-Barr virus-transformed lymphoblastoid cell lines and later expanded to other cell and tissue types. Integration of the eQTL information and the network analysis of transcription modules may lead to a better understanding of gene expression regulation. As these network modules have relevance to biological or disease pathways, these findings may be useful in predicting disease susceptibility.