Browse > Article
http://dx.doi.org/10.4014/jmb.1603.03023

Identification of the Phenalamide Biosynthetic Gene Cluster in Myxococcus stipitatus DSM 14675  

Park, Suhyun (Department of Biotechnology, Hoseo University)
Hyun, Hyesook (Department of Biotechnology, Hoseo University)
Lee, Jong Suk (Bio Center, Gyeonggi Institute of Science & Technology Promotion)
Cho, Kyungyun (Department of Biotechnology, Hoseo University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.9, 2016 , pp. 1636-1642 More about this Journal
Abstract
Phenalamide is a bioactive secondary metabolite produced by Myxococcus stipitatus. We identified a 56 kb phenalamide biosynthetic gene cluster from M. stipitatus DSM 14675 by genomic sequence analysis and mutational analysis. The cluster is comprised of 12 genes (MYSTI_04318- MYSTI_04329) encoding three pyruvate dehydrogenase subunits, eight polyketide synthase modules, a non-ribosomal peptide synthase module, a hypothetical protein, and a putative flavin adenine dinucleotide-binding protein. Disruption of the MYSTI_04324 or MYSTI_04325 genes by plasmid insertion resulted in a defect in phenalamide production. The organization of the phenalamide biosynthetic modules encoded by the fifth to tenth genes (MYSTI_04320-MYSTI_04325) was very similar to that of the myxalamid biosynthetic gene cluster from Stigmatella aurantiaca Sg a15, as expected from similar backbone structures of the two substances. However, the loading module and the first extension module of the phenalamide synthase encoded by the first to fourth genes (MYSTI_04326-MYSTI_04329) were found only in the phenalamide biosynthetic gene cluster from M. stipitatus DSM 14675.
Keywords
Myxobacteria; Myxococcus stipitatus; secondary metabolite; phenalamide; biosynthetic gene;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ahn J-W, Choi S-U, Kwon HJ. 2002. Isolation and properties of cytotoxic polyene antibiotics produced by Myxococcus stipitatus JW117. Kor. J. Microbiol. Biotechnol. 30: 157-161.
2 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410.   DOI
3 Beyer S, Kunze B, Silakowski B, Müller R. 1999. Metabolic diversity in myxobacteria: identification of the myxalamid and the stigmatellin biosynthetic gene cluster of Stigmatella aurantiaca Sg a15 and a combined polyketide-(poly)peptide gene cluster from the epothilone producing strain Sorangium cellulosum So ce90. Biochim. Biophys. Acta 1445: 185-195.   DOI
4 Gerth K, Jansen R, Reifenstahl G, Höfle G, Irschik H, Kunze B, et al. 1983. The myxalamids, new antibiotics from Myxococcus xanthus (Myxobacterales). I. Production, physico-chemical and biological properties, and mechanism of action. J. Antibiot. 36: 1150-1156.   DOI
5 Cho K, Zusman DR. 1999. Sporulation timing in Myxococcus xanthus is controlled by the espAB locus. Mol. Microbiol. 34: 714-725.   DOI
6 Donadio S, Staver MJ, McAlpine JB, Swanson SJ, Katz L. 1991. Modular organization of genes required for complex polyketide biosynthesis. Science 252: 675-679.   DOI
7 Friedrich T, Heek PV, Leif H, Ohnishi T, Forche E, Kunze B, et al. 1994. Two binding sites of inhibitors in NADH: ubiquinone oxidoreductase (complex I). Relationship of one site with the ubiquinone-binding site of bacterial glucose:ubiquinone oxidoreductase. Eur. J. Biochem. 219: 691-698.   DOI
8 Gerth K, Pradella S, Perlova O, Beyer S, Müller R. 2003. Myxobacteria: proficient producers of novel natural products with various biological activities - past and future biotechnological aspects with the focus on the genus Sorangium. J. Biotechnol. 106: 233-253.   DOI
9 Huntley S, Kneip S, Treuner-Lange A, Søgaard-Andersen L. 2013. Complete genome sequence of Myxococcus stipitatus strain DSM 14675, a fruiting myxobacterium. Genome Announc. 1: e0010013.   DOI
10 Kim YJ, Furihata K, Yamanaka S, Fudo R, Seto H. 1991. Isolation and structural elucidation of phenalamide, a new antibiotic effective to multidrug-resistant cancer cells. J. Antibiot. 44: 553-556.   DOI
11 Lampky JR, Brockman ER. 1977. Fluorescence of Myxococcus stipitatus. Int. J. Syst. Evol. Microbiol. 27: 161.
12 Maier T, Leibundgut M, Ban N. 2008. The crystal structure of a mammalian fatty acid synthase. Science 321: 1315-1322.   DOI
13 Shi W, Köhler T, Zusman DR. 1994. Motility and chemotaxis in Myxococcus xanthus. Methods Mol. Genet. 3: 258-269.
14 Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Res. 43: D222-D226.   DOI
15 Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, et al. 2011. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters. Nucleic Acids Res. 39: W339-W346.   DOI
16 Reichenbach H. 2005. Myxococcales, pp. 1059-1144. In Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds.). Bergey's Manual of Systematic Bacteriology, 2nd Ed. Bergey's Manual Trust, East Lansing, MI, USA.
17 Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, et al. 2015. antiSMASH 3.0 - a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43: W237-W243.   DOI
18 Shin H, Youn J, An D, Cho K. 2013. Production of antimicrobial substances by strains of myxobacteria Corallococcus and Myxococcus. Kor. J. Microbiol. Biotechnol. 41: 44-51.   DOI
19 Silakowski B, Nordsiek G, Kunze B, Blöcker H, Müller R. 2001. Novel features in a combined polyketide synthase/non-ribosomal peptide synthetase: the myxalamid biosynthetic gene cluster of the myxobacterium Stigmatella aurantiaca Sga15. Chem. Biol. 8: 59-69.   DOI
20 Trowitzsch-Kienast W, Forche E, Wray V, Reichenbach H, Jurkiewicz E, Hunsmann G, Höfle G. 1992. Antibiotika aus gleitenden bakterien, 45. phenalamide, neue HIV-1-inhibitoren aus Myxococcus stipitatus Mx s40. Liebigs Ann. Chem. 1992: 659-779.   DOI
21 Weissman KJ, Müller R. 2010. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat. Prod. Rep. 27: 1276-1295.   DOI
22 Williams GJ. 2013. Engineering polyketide synthases and non-ribosomal peptide synthetases. Curr. Opin. Struct. Biol. 23: 603-612.   DOI