Browse > Article

Expression and Characterization of Trehalose Biosynthetic Modules in the Adjacent Locus of the Salbostatin Gene Cluster  

Choeng, Yong-Hoon (Division of Bioscience and Bioinformatics, Myongji University)
Yang, Ji-Yeon (Division of Bioscience and Bioinformatics, Myongji University)
Delcroix, Gaetan (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
Kim, Yoon-Jung (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
Chang, Yong-Keun (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
Hong, Soon-Kwang (Division of Bioscience and Bioinformatics, Myongji University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.10, 2007 , pp. 1675-1681 More about this Journal
Abstract
The pseudodisaccharide salbostatin, which consists of valienamine linked to 2-amino-1,5-anhydro-2-deoxyglucitol, is a strong trehalase inhibitor. From our Streptomyces albus ATCC 21838 genomic library, we identified thirty-two ORFs in a 37-kb gene cluster. Twenty-one genes are supposed to be a complete set of modules responsible for the salbostatin biosynthesis. Through sequence analysis of the gene cluster, some of the upstream gene products (SalB, SalC, SalD, SalE, and SalF) revealed functional resemblance with trehalose biosynthetic enzymes. On the basis of this rationale, we isolated the five genes (salB, salC, salD, salE, and salF) from the S. albus ATCC 21838 and cloned them into the expression vector pWHM3. We demonstrated the noticeable expression and accumulation of trehalose, using only the five upstream biosynthetic gene cluster of salbostatin, in the transformed Streptomyces lividans TK24. Finally, 490 mg/l trehalose was produced by fermentation of the transformant with sucrosedepleted R2YE media.
Keywords
Trehalose; salbostatin; Streptomyces albus;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Bystrykh, L. V., M. A. Fernández-Moreno, J. K. Herrema, F. Malpartida, D. A. Hopwood, and L. Dijkhuizen. 1996. Production of actinorhodin-related 'blue pigments' by Streptomyces coelicolor A3(2). J. Bacteriol. 178: 2238-2244   DOI
2 Crowe, J. H., L. M. Crowe, and D. Chapman. 1984. Preservation of membranes in anhydrobiotic organisms: The role of trehalose. Science 223: 701-703   DOI   ScienceOn
3 De Smet, K. A., A. Weston, I. N. Brown, D. B. Young, and B. D. Robertson. 2000. Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146: 199-208   DOI
4 Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309-316   DOI
5 Kanehisa, M. and S. Goto. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28: 27-30   DOI
6 Maruta, K., H. Mitsuzumi, T. Nakada, M. Kubota, H. Chaen, S. Fukuda, T. Sugimoto, and M. Kurimoto. 1996. Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim. Biophys. Acta 1291: 177-181   DOI   ScienceOn
7 McBride, M. J. and J. C. Ensign. 1987. Metabolism of endogenous trehalose by Streptomyces griseus spores and by spores or cells of other actinomycetes. J. Bacteriol. 169: 5002-5007   DOI
8 Wehmeier, U. F. and W. Piepersberg. 2004. Biotechnology and molecular biology of the alpha-glucosidase inhibitor acarbose. Appl. Microbiol. Biotechnol. 63: 613-625   DOI
9 Pospiech, A. and B. Neumann. 1995. A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet. 11: 217-218   DOI   ScienceOn
10 Wiemken, A. 1990. Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Van Leeuwenhoek 58: 209-217   DOI
11 Westley, J. W., J. F. Blount Jr., R. H. Evans, and C. M. Liu. 1977. C-17 epimers of deoxy-(O-8)-salinomycin from Streptomyces albus (ATCC 21838). J. Antibiot. 30: 610-612   DOI
12 Caprioli, M., A. Krabbe Katholm, G. Melone, H. Ramlov, C. Ricci, and N. Santo. 2004. Trehalose in desiccated rotifers: A comparison between a bdelloid and a monogonont species. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 139: 527-532   DOI   ScienceOn
13 Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, N.Y
14 Elbein, A. D., Y. T. Pan, I. Pastuszak, and D. Carroll. 2003. New insights on trehalose: A multifunctional molecule. Glycobiology 13: 17R-27R   DOI
15 Goddijn, O. J. and K. van Dun. 1999. Trehalose metabolism in plants. Trends Plant Sci. 4: 315-319   DOI   ScienceOn
16 Hopwood, D. A., M. J. Bibb, K. F. Chater, T. Kieser, C. J. Bruton, H. M. Kieser, D. J. Lydiate, C. P. Smith, and J. M. Ward. 1985. Genetic Manipulation of Streptomyces: A Laboratory Manual. The John Innes Foundation, Norwich, England
17 Romero, C., J. M. Bellés, J. L. Vaya, and R. Serrano. 1997. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: Pleiotropic phenotypes include drought tolerance. Planta 201: 293-297   DOI   ScienceOn
18 Choi, S.-S., J. H. Kim, J.-H. Kim, D.-K. Kang, S.-S. Kang, and S.-K. Hong. 2006. Functional anaylsis of sprD gene encoding Streptomyces griseus protease D (SGPD) in Streptomyces griseus . J. Microbiol. Biotechnol. 16: 312-317   과학기술학회마을
19 Boos, W., U. Ehmann, W. Forki, M. Klein, M. Rimmele, and P. Postma. 1990. Trehalose transport and metabolism in Escherichia coli. J. Bacteriol. 172: 3450-3461   DOI
20 Jang, I. C., S. J. Oh, J. S. Seo, W. B. Choi, S. I. Song, C. H. Kim, Y. S. Kim, H. S. Seo, Y. D. Choi, B. H. Nahm, and J. K. Kim. 2003. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol. 131: 516-524   DOI   ScienceOn
21 Horlacher, R., K. Uhland, W. Klein, M. Ehrmann, and W. Boos. 1996. Characterization of a cytoplasmic trehalase of Escherichia coli. J. Bacteriol. 178: 6250-6257   DOI
22 Avonce, N., A. M. Vargas, E. Morett, and G. Iturriaga. 2006. Insights on the evolution of trehalose biosynthesis. BMC Evol. Biol. 6: 109-124   DOI   ScienceOn
23 Muller, J., R. A. Aeschbacher, A. Wingler, T. Boller, and A. Wiemken. 2001. Trehalose and trehalase in Arabidopsis. Plant Physiol. 125: 1086-1093   DOI
24 Yang, H. Y., S.-S. Choi, W.-J. Chi, J. H. Kim, D.-K. Kang, J. Chun, S.-S. Kang, and S.-K. Hong. 2005. Identification of the sprU gene encoding an additional sprT homologous trypsin-type protease in Streptomyces griseus. J. Microbiol. Biotechnol. 15: 1125-1129   과학기술학회마을
25 Berg, A. H., T. P. Combs, and P. E. Scherer. 2002. ACRP30/ adiponectin: An adipokine regulating glucose and lipid metabolism. Trends Endocrinol. Metab. 13: 84-89   DOI   ScienceOn
26 Paik, S. K., H. S. Yun, H. Iwahashi, K. Obuchi, and I. N. Jin. 2005. Effect of trehalose on stabilization of cellular components and critical targets against heat shock in Saccharomyces cerevisiae KNU5377. J. Microbiol. Biotechnol. 15: 965-970   과학기술학회마을
27 Shirling, E. B. and D. Gottlieb. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16: 313-340   DOI
28 Kaasen, I., J. McDougall, and A. R. Strom. 1994. Analysis of the otsBA operon for osmoregulatory trehalose synthesis in Escherichia coli and homology of the OtsA and OtsB proteins to the yeast trehalose-6-phosphate synthase/ phosphatase complex. Gene 145: 9-15   DOI   ScienceOn
29 Schick, I., D. Haltrich, and K. D. Kulbe. 1995. Trehalose phosphorylase from Pichia fermentans and its role in the metabolism of trehalose. Appl. Microbiol. Biotechnol. 43: 1088-1095   DOI
30 Knuesel, I., S. Murao, T. Shin, T. Amachi, and H. Kayser. 1998. Comparative studies of suidatrestin, a specific inhibitor of trehalases. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 120: 639-646   DOI   ScienceOn