• 제목/요약/키워드: gene expression microarray

검색결과 822건 처리시간 0.023초

DNMT3a rs1550117 Polymorphism Association with Increased Risk of Helicobacter pylori Infection

  • Cao, Xue-Yuan;Jia, Zhi-Fang;Cao, Dong-Hui;Kong, Fei;Jin, Mei-Shan;Suo, Jian;Jiang, Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5713-5718
    • /
    • 2013
  • Background: DNA methyltransferase-3a (DNMT3a) plays significant roles in embryogenesis and the generation of aberrant methylation in carcinogenesis. This study aimed to investigate associations between single nucleotide polymorphisms (SNPs) of the DNMT3a gene and risk of Helicobacter pylori infection, gastric atrophy and gastric cancer. Methods: The subjects comprised 447 patients with gastric cancer; 111 individuals with gastric atrophy and 961 healthy controls. Two SNPs (rs1550117 and rs13420827) of the DNMT3a gene were genotyped by Taqman assay. DNMT3a expression was analyzed in cancer tissues from 89 patients by tissue microarray technique. Odds ratio (ORs) and 95% confidence intervals were calculated by multivariate logistic regression. Results: Among healthy controls, risk of H.pylori infection was significantly higher in subjects with the rs1550117 AA genotype, compared to those with GG/AG genotypes of DNMT3a [OR=2.08, (95%CI: 1.02-4.32)]. However, no significant correlation was found between the two SNPs and risk of developing gastric atrophy or gastric cancer. In addition, no increase in DNMT3a expression was observed in the gastric cancer with H.pylori infection. Conclusions: This study revealed that DNMT3a rs1550117 polymorphism is significantly associated with an increased risk of H. pylori infection, but did not support any evidence for contributions of DNMT3a rs1550117 and rs13420827 to either gastric atrophy or gastric cancer. The biological roles of DNMT3a polymorphisms require further investigation.

RAD2 and PUF4 Regulate Nucleotide Metabolism Related Genes, HPT1 and URA3

  • Yu, Sung-Lim;Lim, Hyun-Sook;Kang, Mi-Sun;Kim, Mai Huynh;Kang, Dong-Chul;Lee, Sung-Keun
    • Molecular & Cellular Toxicology
    • /
    • 제4권4호
    • /
    • pp.338-347
    • /
    • 2008
  • Yeast RAD2, a yeast homolog of human XPG gene, is an essential element of nucleotide excision repair (NER), and its deletion confers UV sensitivity and NER deficiency. 6-Azauracil (6AU) sensitivity of certain rad2 mutants revealed that RAD2 has transcription elongation function. However, the fundamental mechanism by which the rad2 mutations confer 6AU sensitivity was not clearly elucidated yet. Using an insertional mutagenesis, PUF4 gene encoding a yeast pumilio protein was identified as a deletion suppressor of rad2${\Delta}$ 6AU sensitivity. Microarray analysis followed by confirmatory RT-qPCR disclosed that RAD2 and PUF4 regulated expression of HPT1 and URA3. Overexpression of HPT1 and URA3 rescued the 6AU sensitivity of rad2${\Delta}$ and puf4${\Delta}$ mutants. These results indicate that 6AU sensitivity of rad2 mutants is in part ascribed to impaired expression regulation of genes in the nucleotide metabolism. Based on the results, the possible connection between impaired transcription elongation function of RAD2/XPG and Cockayne syndrome via PUF4 is discussed.

Changes in gene expression associated with oocyte meiosis after $Obox4$ RNAi

  • Lee, Hyun-Seo;Kim, Eun-Young;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제38권2호
    • /
    • pp.68-74
    • /
    • 2011
  • Objective: Previously, we found that oocyte specific homeobox (Obox) 4 plays significant role in completion of meiosis specifically at meiosis I-meiosis II (MI-MII) transition. The purpose of this study was to determine the mechanism of action of $Obox4$ in oocyte maturation by evaluating downstream signal networking. Methods: The $Obox4$ dsRNA was prepared by $in$ $vitro$ transcription and microinjected into the cytoplasm of germinal vesicle oocytes followed by $in$ $vitro$ maturation in the presence or absence of 0.2 mM 3-isobutyl-1-metyl-xanthine. Total RNA was extracted from 200 oocytes of each group using a PicoPure RNA isolation kit then amplified two-rounds. The probe hybridization and data analysis were used by Affymetrix Gene-Chip$^{(R)}$ Mouse Genome 430 2.0 array and GenPlex 3.0 (ISTECH, Korea) software, respectively. Results: Total 424 genes were up (n=80) and down (n=344) regulated after $Obox4$ RNA interference (RNAi). Genes mainly related to metabolic pathways and mitogen-activated protein kinase (MAPK) signaling pathway was changed. Among the protein kinase C (PKC) isoforms, PKC-alpha, beta, gamma were down-regulated and especially the MAPK signaling pathway PKC-gamma was dramatically decreased by $Obox4$ RNAi. In the cell cycle pathway, we evaluated the expression of genes involved in regulation of chromosome separation, and found that these genes were down-regulated. It may cause the aberrant chromosome segregation during MI-MII transition. Conclusion: From the results of this study, it is concluded that $Obox4$ is important upstream regulator of the PKC and anaphase-promoting complex action for maintaining intact germinal vesicle.

Transcriptomic Analysis of Rat Brain Tissue Following Gamma Knife Surgery: Early and Distinct Bilateral Effects in the Un-Irradiated Striatum

  • Hirano, Misato;Shibato, Junko;Rakwal, Randeep;Kouyama, Nobuo;Katayama, Yoko;Hayashi, Motohiro;Masuo, Yoshinori
    • Molecules and Cells
    • /
    • 제27권2호
    • /
    • pp.263-268
    • /
    • 2009
  • Gamma knife surgery (GKS) is used for the treatment of various human brain disorders. However, the biological effects of gamma ray irradiation on both the target area, and the surrounding tissues are not well studied. The effects of gamma ray exposure to both targeted and untargeted regions were therefore evaluated by monitoring gene expression changes in the unilateral irradiated (60 Gy) and contralateral un-irradiated striata in the rat. Striata of irradiated and control brains were dissected 16 hours post-irradiation for analysis using a whole genome 44K DNA oligo microarray approach. The results revealed 230 induced and 144 repressed genes in the irradiated striatum and 432 induced and 239 repressed genes in the unirradiated striatum. Out of these altered genes 39 of the induced and 16 of the reduced genes were common to both irradiated and un-irradiated tissue. Results of semiquantitative, confirmatory RT-PCR and western blot analyses suggested that ${\gamma}$-irradiation caused cellular damage, including oxidative stress, in the striata of both hemispheres of the brains of treated animals.

올리고 마이크로어래이를 이용한 활성화된 인간 제대 정맥 내피세포의 유전자 발현 조사 (DNA Microarray Analysis of the Gene Expression Profile of Activated Human Umbilical Vein En-dothelial Cells.)

  • 김선용;오호균;이수영;남석우;이정용;안현영;신종철;홍용길;조영애
    • 생명과학회지
    • /
    • 제14권5호
    • /
    • pp.874-881
    • /
    • 2004
  • 혈관 신생은 암의 성장 및 전이뿐만 아니라 염증, 관절염, 건성, 동맥경화 등의 병적인 진행에 주요한 역할을 하며, 혈관신생 억제를 통한 암의 치료를 시도하는 연구들이 활발하게 진행되고 있다. 혈관 신생 시 내피세포의 증식, 이동을 유도하는 활성화 과정이 필수적으로 일어나는 것으로 알려져 있다 본 연구에서는 in vitro에서 내피세포를 배양하여, 각종 growth factor가 풍부한 배지에서 활성화 시켰을 때, 그렇지 않는 세포들과의 유전자 발현 형태를 비교 조사하였다. HUVEC을 70∼80% cofluency로 배양시킨 후에 endothelial cell growth supplement (ECCS), 20% fetal bovine serum, heparin이 첨가된 Ml99 배지에서 13 시간 활성화시킨 세포(AHUVEC)와 대조군 세포(RHUVEC)로부터 분리한 total RNA로부터 CDNA를 제작하였고, 이것을 18,864 개의 유전자가 올려져있는 인간 올리고 칩과 hybridization 반응을 시켰다. 반응된 유전자를 이용하여 random clustering분석을 실시한 결과, 활성화 시켰던 HUVEC과 그렇지 않은 HUVEC으로 dendrogram 상에서 두개의 subgroup으로 나뉘어 지는 것을 확인할 수 있었다. 최소 2배 이상 발현 변화가 있는 유전자 122종이 활성화 시켰던 HUVEC으로부터 추출되었다. 이중에서 기능이 알려진 32 개의 유전자는 활성화시킨 HUVEC에서 발현이 증가하였고, 38 개의 유전자 발현은 감소하였다. 흥미롭게도 세포 증식과 이동, 염증, 면역반응에 관련한 유전자의 발현이 증가된 반면에 세포 흡착과 혈관 조직과 기능에 관련한 유전자의 발현이 감소된 것이 관찰되었다. 예상외로 규명이 잘된 혈관신생 인자와 관련한 유전자들의 발현에는 크기 차이를 보이지 않았으나, Eph-B4의 발현은 약 4 배 감소된 것으로 관찰되었다 또한, 2배 이상 발현에 차이를 보이고 기능이 알려져 있지 않은 유전자 52종이 발견되었다. 따라서, 이러한 연구 결과로부터 새로운 혈관 표적 물질 개발에 대한 기회가 제공될 수 있을 것이라 사료된다.

인간 중간엽 줄기세포로부터 골아세포로의 분화시 관찰되는 유전자 발현 분석 (Gene Expression Profile Associated with the Differentiation of Osteoblasts from Human Mesenchymal Stem Cells)

  • 김여경;김희남;이일권;박경수;양덕환;조상희;이제중;정익주;김순학;김형준
    • 생명과학회지
    • /
    • 제16권2호
    • /
    • pp.231-239
    • /
    • 2006
  • 인체의 골수내에 존재하는 중간엽 줄기세포는 성장인자나 환경적 요인에 의해 지방세포, 골아세포, 연골모세포 및 연골세포 등으로 분화됨이 알려져 있다. 본 연구에서는 정상 인체의 골수으로 얻어진 중간엽 줄기세포로부터 골아세포의 분화 가능성을 알아보고 이에 관여하는 유전자의 발현을 조사하였다. 정상 골수의 중간엽 줄기세포를 골유도성 자극보조제로서 $\beta$-glycerol phosphate, L-ascorbic acid 및 dexamethasone을 첨가하여 골아세포로의 분화를 유도한 세포와 골유도성 자극보조제를 첨가하지 않은 세포를 배양하여 일정 간격으로 cDNA microarray를 이용하여 각각의 단계에서 발현되는 유전자를 검사하고 이로 인해 얻어진 유전자의 발현량을 분석하기 위해 real time quantitative RT-PCR 을 시행하였다. 골유도성 자극보조제를 첨가한 군에서 첨가하지 않은 군에 비하여 정상적인 골아세포로의 성장이 유도되었고, 분화과정에서 36개의 유전자의 발현이 증가되었고, 59개의 유전자의 발현이 억제되었다. 주로 골 생성 과정과 연관이 있다고 알려진 osteoprotegerin, LRP5 및 metallothionein 2A 등의 유전자들이 분화과정에서 발현 증가되어 나타났고, 줄기세포로부터 분화될 수 있는 조직들 중 근육, 지방, 연골, 혈관 및 신경 조직과 연관된 유전자들은 분화 후기에 감소하거나 혹은 전분화 과정 동안 발현이 억제되었다. 본 연구에서는 골아세포의 분화와 연관된 유전자 발현을 확인함으로써 특정 조건하에서 중간엽 줄기세포로부터 골아세포로의 분화가 가능함을 확인할 수 있었고, 이 과정에 관련된 특정 유전자의 발현 양상을 밝힐 수 있었다.

Ectopic Overexpression of COTE1 Promotes Cellular Invasion of Hepatocellular Carcinoma

  • Zhang, Hai;Huang, Chang-Jun;Tian, Yuan;Wang, Yu-Ping;Han, Ze-Guang;Li, Xiang-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5799-5804
    • /
    • 2012
  • Family with sequence similarity 189, member B (FAM189B), alias COTE1, a putative oncogene selected by microarray, for the first time was here found to be significantly up-regulated in hepatocellular carcinoma (HCC) specimens and HCC cell lines. mRNA expression of COTE1 in HCC samples and cell lines was detected by reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR, while protein expression of COTE1 in HCC tissues was assessed by immunohistochemistry. In addition, invasion of HCC cells was observed after overexpressing or silencing COTE1. In the total of 48 paired HCC specimens, compared with the adjacent non-cancer tissues, the expression of COTE1 was up-regulated in 31 (p<0.01). In HCC cell lines, COTE1 expression was significantly higher than in normal human adult liver (p<0.01). Overexpression of COTE1 enhanced HCC-derived LM6 and MHCC-L cellular invasion in vitro. In contrast, COTE1 knockdown via RNAi markedly suppressed these phenotypes, as documented in LM3 and MHCC-H HCC cells. Mechanistic analyses indicated that COTE1 could physically associate with WW domain oxidoreductase (WWOX), a tumor suppressor. COTE1 may be closely correlated with invasion of hepatocellular carcinoma (HCC) cells and thus may serve as an effective target for gene therapy.

Induction of Signal Transduction Pathway Genes in Dendritic Cells by Lipopolysaccharides from Porphyromonas gingivalis and Escherichia coli

  • Jin, Ho-Kyeong;Lee, Young-Hwa;Jeong, So-Yeon;Na, Hee-Sam;Park, Hae-Ryoun;Chung, Jin
    • International Journal of Oral Biology
    • /
    • 제35권3호
    • /
    • pp.113-119
    • /
    • 2010
  • Porphyromonas (P.) gingivalis lipopolysaccharide (Pg LPS) is the major pathogenic component of periodontal disease. In this study, we have attempted to determine the expression profiles of the signal transduction pathway genes induced by Pg LPS in comparison with Escherichia (E.) coli LPS (Ec LPS). DC2.4 cells were treated for two hours with $1\;{\mu}g/ml$ of Pg LPS or $0.5\;{\mu}g/ml$ of Ec LPS. The total RNA from these cells was then isolated and reverse-transcribed. Gene expression profiles were then analyzed with a signal transduction pathway finder GEArray Q series kit and significant changes in expression were confirmed by real-time PCR. The microarray results indicated that several genes, including Tnfrsf10b, Vcam1, Scyb9, Trim25, Klk6, and Stra6 were upregulated in the DC2.4 cells in response to Pg LPS treatment, but were downregulated or unaffected by Ec LPS. Realtime PCR revealed that the expression of Trim25, Scyb9 and Tnfrsf10b was increased over the untreated control. Notably, Trim25 and Tnfrsf10b were more strongly induced by Pg LPS than by Ec LPS. These results provide greater insight into the signal transduction pathways that are altered by P. gingivalis LPS.

Gene Expression Profiles of HeLa Cells Impacted by Hepatitis C Virus Non-structural Protein NS4B

  • Zheng, Yi;Ye, Lin-Bai;Liu, Jing;Jing, Wei;Timani, Khalid A.;Yang, Xiao-Jun;Yang, Fan;Wang, Wei;Gao, Bo;Wu, Zhen-Hui
    • BMB Reports
    • /
    • 제38권2호
    • /
    • pp.151-160
    • /
    • 2005
  • By a cDNA array representing 2308 signal transduction related genes, we studied the expression profiles of HeLa cells stably transfected by Hepatitis C virus nonstructural protein 4B (HCV-NS4B). The alterations of the expression of four genes were confirmed by real-time quantitative RT-PCR; and the aldo-keto reductase family 1, member C1 (AKR1C1) enzyme activity was detected in HCV-NS4B transiently transfected HeLa cells and Huh-7, a human hepatoma cell line. Of the 2,308 genes we examined, 34 were up-regulated and 56 were down-regulated. These 90 genes involved oncogenes, tumor suppressors, cell receptors, complements, adhesions, transcription and translation, cytoskeletion and cellular stress. The expression profiling suggested that multiple regulatory pathways were affected by HCV-NS4B directly or indirectly. And since these genes are related to carcinogenesis, host defense system and cell homeostatic mechanism, we can conclude that HCV-NS4B could play some important roles in the pathogenesis mechanism of HCV.

Molecular Analysis of the Salmonella Typhimurium tdc Operon Regulation

  • Kim, Min-Jeong;Lim, Sang-Yong;Ryu, Sang-Ryeol
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권6호
    • /
    • pp.1024-1032
    • /
    • 2008
  • Efficient expression of the Salmonella Typhimurium tdc ABCDEG operon involved in the degradation of L-serine and L-threonine requires TdcA, the transcriptional activator of the tdc operon. We found that the tdcA gene was transiently activated when the bacterial growth condition was changed from aerobic to anaerobic, but this was not observed if Salmonella was grown anaerobically from the beginning of the culture. Expression kinetics of six tdc genes after anaerobic shock demonstrated by a real-time PCR assay showed that the tdc CDEG genes were not induced in the tdcA mutant but tdcB maintained its inducibility by anaerobic shock even in the absence of tdcA, suggesting that an additional unknown transcriptional regulation may be working for the tdcB expression. We also investigated the effects of nucleoid-associated proteins by primer extension analysis and found that H-NS repressed tdcA under anaerobic shock conditions, and fis mutation delayed the peak expression time of the tdc operon. DNA microarray analysis of genes regulated by TdcA revealed that the genes involved in N-acetylmannosamine, maltose, and propanediol utilization were significantly induced in a tdcA mutant. These findings suggest that Tdc enzymes may playa pivotal role in energy metabolism under a sudden change of oxygen tension.