Molecular Analysis of the Salmonella Typhimurium tdc Operon Regulation

  • Kim, Min-Jeong (Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Lim, Sang-Yong (Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Ryu, Sang-Ryeol (Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University)
  • Published : 2008.06.30

Abstract

Efficient expression of the Salmonella Typhimurium tdc ABCDEG operon involved in the degradation of L-serine and L-threonine requires TdcA, the transcriptional activator of the tdc operon. We found that the tdcA gene was transiently activated when the bacterial growth condition was changed from aerobic to anaerobic, but this was not observed if Salmonella was grown anaerobically from the beginning of the culture. Expression kinetics of six tdc genes after anaerobic shock demonstrated by a real-time PCR assay showed that the tdc CDEG genes were not induced in the tdcA mutant but tdcB maintained its inducibility by anaerobic shock even in the absence of tdcA, suggesting that an additional unknown transcriptional regulation may be working for the tdcB expression. We also investigated the effects of nucleoid-associated proteins by primer extension analysis and found that H-NS repressed tdcA under anaerobic shock conditions, and fis mutation delayed the peak expression time of the tdc operon. DNA microarray analysis of genes regulated by TdcA revealed that the genes involved in N-acetylmannosamine, maltose, and propanediol utilization were significantly induced in a tdcA mutant. These findings suggest that Tdc enzymes may playa pivotal role in energy metabolism under a sudden change of oxygen tension.

Keywords

References

  1. Badia, J., J. Ros, and J. Aguilar. 1985. Fermentation mechanism of fucose and rhamnose in Salmonella typhimurium and Klebsiella pneumoniae. J. Bacteriol. 161: 435-437
  2. Baek, J. and S. Lee. 2007. Transcriptome analysis of phosphate starvation response in Escherichia coli. J. Microbiol. Biotechnol. 17: 244-252
  3. Bobik, T. A., G. D. Havemann, R. J. Busch, D. S. Williams, and H. C. Aldrich. 1999. The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme $B_{12}$-dependent 1,2-propanediol degradation. J. Bacteriol. 181: 5967-5975
  4. Boos, W. and H. Shuman. 1998. Maltose/maltodextrin system of Escherichia coli: Transport, metabolism, and regulation. Microbiol. Mol. Biol. Rev. 62: 204-229
  5. Burman, J. D., C. E. Stevenson, R. G. Sawers, and D. M. Lawson. 2007. The crystal structure of Escherichia coli TdcF, a member of the highly conserved YjgF/YER057c/UK114 family. BMC Struct. Biol. 7: 30 https://doi.org/10.1186/1472-6807-7-30
  6. Carsiotis, M., D. L. Weinstein, H. Karch, I. A. Holder, and A. D. O'Brien. 1984. Flagella of Salmonella typhimurium are a virulence factor in infected C57BL/6J mice. Infect. Immun. 46: 814-818
  7. Chan, R. K., D. Botstein, T. Watanabe, and Y. Ogata. 1972. Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. II. Properties of a high frequency transducing lysate. Virology 50: 883-898 https://doi.org/10.1016/0042-6822(72)90442-4
  8. Chattopadhyay, S., Y. F. Wu, and P. Datta. 1997. Involvement of FNR and ArcA in anaerobic expression of the tdc operon of Escherichia coli. J. Bacteriol. 179: 4868-4873 https://doi.org/10.1128/jb.179.15.4868-4873.1997
  9. Datta, P., T. J. Goss, J. R. Omnaas, and R. V. Patil. 1987. Covalent structure of biodegradative threonine dehydratase of Escherichia coli: Homology with other dehydratases. Proc. Natl. Acad. Sci. USA 84: 393-397
  10. Dibb-Fuller, M. P., E. Allen-Vercoe, C. J. Thorns, and M. J. Woodward. 1999. Fimbriae- and flagella-mediated association with and invasion of cultured epithelial cells by Salmonella enteritidis. Microbiology 145: 1023-1031 https://doi.org/10.1099/13500872-145-5-1023
  11. Dorman, C. J. 2004. H-NS: A universal regulator for a dynamic genome. Nat. Rev. Microbiol. 2: 391-400 https://doi.org/10.1038/nrmicro883
  12. Drlica, K. and J. Rouviere-Yaniv. 1987. Histonelike proteins of bacteria. Microbiol. Rev. 51: 301-319
  13. Egan, R. M. and A. T. Phillips. 1977. Requirements for induction of the biodegradative threonine dehydratase in Escherichia coli. J. Bacteriol. 132: 370-376
  14. Ellermeier, C. D., A. Janakiraman, and J. M. Slauch. 2002. Construction of targeted single copy lac fusions using lambda Red and FLP-mediated site-specific recombination in bacteria. Gene 290: 153-161 https://doi.org/10.1016/S0378-1119(02)00551-6
  15. Feldman, D. A. and P. Datta. 1975. Catabolite inactivation of biodegradative threonine dehydratase of Escherichia coli. Biochemistry 14: 1760-1767 https://doi.org/10.1021/bi00679a031
  16. Ganduri, Y. L., S. R. Sadda, M. W. Datta, R. K. Jambukeswaran, and P. Datta. 1993. TdcA, a transcriptional activator of the tdcABC operon of Escherichia coli, is a member of the LysR family of proteins. Mol. Gen. Genet. 240: 395-402
  17. Goss, T. J., H. P. Schweizer, and P. Datta. 1988. Molecular characterization of the tdc operon of Escherichia coli K-12. J. Bacteriol. 170: 5352-5359 https://doi.org/10.1128/jb.170.11.5352-5359.1988
  18. Haddock, B. A. and C. W. Jones. 1977. Bacterial respiration. Bacteriol. Rev. 41: 47-99
  19. Hagewood, B. T., Y. L. Ganduri, and P. Datta. 1994. Functional analysis of the tdcABC promoter of Escherichia coli: Roles of TdcA and TdcR. J. Bacteriol. 176: 6214-6220 https://doi.org/10.1128/jb.176.20.6214-6220.1994
  20. He$\beta$linger, C., S. A. Fairhurst, and G. Sawers. 1998. Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades Lthreonine to propionate. Mol. Microbiol. 27: 477-492 https://doi.org/10.1046/j.1365-2958.1998.00696.x
  21. Hobert, E. H. and P. Datta. 1983. Synthesis of biodegradative threonine dehydratase in Escherichia coli: Role of amino acids, electron acceptors, and certain intermediary metabolites. J. Bacteriol. 155: 586-592
  22. Kang, C.-H., Y.-D. Nam, W.-H. Chung, Z.-H. Quan, Y.-H. Park, S.-J. Park, R. Desmone, X.-F. Wan, and S.-K. Rhee. 2007. Relationship between genome similarity and DNA-DNA hybridization among closely related bacteria. J. Microbiol. Biotechnol. 17: 945-951
  23. Keane, O. M. and C. J. Dorman. 2003. The gyr genes of Salmonella enterica serovar Typhimurium are repressed by the factor for inversion stimulation, Fis. Mol. Gen. Genomics 270: 56-65 https://doi.org/10.1007/s00438-003-0896-1
  24. Kim, M., S. Lim, D. Kim, H. E. Choy, and S. Ryu. A tdcA mutation causes attenuation of virulence in Salmonella enterica serovar Typhimurium. In submit
  25. Lee, Y., B. Moon, J. Park, H. Chang, and W. Kim. 2007. Expression of enterotoxin genes in Staphylococcus aureus isolates based on mRNA analysis. J. Microbiol. Biotechnol. 17: 461-467
  26. Lim, S., B. Kim, H.-S. Choi, Y. Lee, and S. Ryu. 2006. Fis is required for proper regulation of ssaG expression in Salmonella enterica serovar Typhimurium. Microb. Pathog. 41: 33-42 https://doi.org/10.1016/j.micpath.2006.03.005
  27. Lim, S., H. Seo, H. Yoon, S. Choi, S. Heu, and S. Ryu. 2003. Molecular analysis of Salmonella enterotoxin gene expression. J. Microbiol. Biotechnol. 13: 598-606
  28. Lim, S., K. Yong, and S. Ryu. 2005. Analysis of Salmonella pathogenicity island 1 expression in response to the changes of osmolarity. J. Microbiol. Biotechnol. 15: 175-182
  29. Livak, K. and T. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and $2^{-{\Delta}{\Delta}C_T}$ method. Methods 25: 402-408 https://doi.org/10.1006/meth.2001.1262
  30. Muskhelishvili, G. and A. Travers. 2003. Transcription factor as a topological homeostat. Front. Biosci. 8: d279-d285 https://doi.org/10.2741/969
  31. Obradors, N., J. Badia, L. Baldoma, and J. Aguilar. 1988. Anaerobic metabolism of the L-rhamnose fermentation product 1,2-propanediol in Salmonella typhimurium. J. Bacteriol. 170: 2159-2162 https://doi.org/10.1128/jb.170.5.2159-2162.1988
  32. Oh, M.-K., M.-J. Cha, S.-G. Lee, L. Rohlin, and J. C. Liao. 2006. Dynamic gene expression profiling of Escherichia coli in carbon source transition from glucose to acetate. J. Microbiol. Biotechnol. 16: 543-549
  33. Palacios, S. and J. C. Escalante-Semerena. 2000. prpR, ntrA and ihf functions are required for expression of the prpBCDE operon, encoding enzymes that catabolize propionate in Salmonella enterica serovar Typhimurium LT2. J. Bacteriol. 182: 905-910 https://doi.org/10.1128/JB.182.4.905-910.2000
  34. Phillips, A. T., R. M. Egan, and B. Lewis. 1978. Control of biodegradative threonine dehydratase inducibility by cyclic AMP in energy-restricted Escherichia coli. J. Bacteriol. 135: 828-840
  35. Plumbridge, J. and E. Vimr. 1999. Convergent pathways for utilization of the amino sugars N-acetylglucosamine, Nacetylmannosamine, and N-acetylneuraminic acid by Escherichia coli. J. Bacteriol. 181: 47-54
  36. Porwollik, S., R. M. Wong, R. A. Helm, K. K. Edwards, M. Calcutt, A. Eisenstark, and M. McClelland. 2004. DNA amplification and rearrangements in archival Salmonella enterica serovar Typhimurium LT2 cultures. J. Bacteriol. 186: 1678-1682 https://doi.org/10.1128/JB.186.6.1678-1682.2004
  37. Sawers, G. 1998. The anaerobic degradation of L-serine and Lthreonine in enterobacteria: Networks of pathways and regulatory signals. Arch. Microbiol. 171: 1-5 https://doi.org/10.1007/s002030050670
  38. Schmitt, C. K., J. S. Ikeda, S. C. Darnell, P. R. Watson, J. Bispham, T. S. Wallis, D. L. Weinstein, E. S. Metcalf, and A. D. O'Brien. 2001. Absence of all components of the flagellar export and synthesis machinery differentially alters virulence of Salmonella enterica serovar Typhimurium in models of typhoid fever, survival in macrophages, tissue culture invasiveness, and calf enterocolitis. Infect. Immun. 69: 5619-5625 https://doi.org/10.1128/IAI.69.9.5619-5625.2001
  39. Schneider, R., A. Travers, T. Kutateladze, and G. Muskhelishvili. 1999. A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli. Mol. Microbiol. 34: 953-964 https://doi.org/10.1046/j.1365-2958.1999.01656.x
  40. Schneider, R., A. Travers, and G. Muskhelishvili. 1997. FIS modulates growth phase-dependent topological transitions of DNA in Escherichia coli. Mol. Microbiol. 26: 519-530 https://doi.org/10.1046/j.1365-2958.1997.5951971.x
  41. Schneider, R., A. Travers, and G. Muskhelishvili. 2000. The expression of the Escherichia coli fis gene is strongly dependent on the superhelical density of the DNA. Mol. Microbiol. 38: 167-175 https://doi.org/10.1046/j.1365-2958.2000.02129.x
  42. Schweizer, H. P. and P. Datta. 1989. Identification and DNA sequence of tdcR, a positive regulatory gene of the tdc operon of Escherichia coli. Mol. Gen. Genet. 218: 516-522 https://doi.org/10.1007/BF00332418
  43. Shizuta, Y. and O. Hayaishi. 1970. Regulation of biodegradative threonine deaminase synthesis in Escherichia coli by cyclic adenosine-3',5'-monophosphate. J. Biol. Chem. 245: 5416-5423
  44. Simanshu, D. K., H. S. Savithri, and M. R. N. Murthy. 2005. Crystal structures of ADP and AMPPNP-bound propionate kinase (TdcD) from Salmonella typhimurium: Comparison with members of acetate and sugar kinase/heat shock cognate 70/ actin superfamily. J. Mol. Biol. 352: 876-892 https://doi.org/10.1016/j.jmb.2005.07.069
  45. Sumantran, V. N., A. J. Tranguch, and P. Datta. 1989. Increased expression of biodegradative threonine dehydratase of Escherichia coli by DNA gyrase inhibitors. FEMS Microbiol. Lett. 65: 37-40 https://doi.org/10.1111/j.1574-6968.1989.tb03593.x
  46. Sumantran, V. N., H. P. Schweizer, and P. Datta. 1990. A novel membrane-associated threonine permease encoded by the tdcC gene of Escherichia coli. J. Bacteriol. 172: 4288-4294 https://doi.org/10.1128/jb.172.8.4288-4294.1990
  47. Van Dyk, T. K. and R. A. LaRossa. 1987. Involvement of ackpta operon products in a-ketobutyrate metabolism by Salmonella typhimurium. Mol. Gen. Genet. 207: 435-440 https://doi.org/10.1007/BF00331612
  48. Wachi, M., K. Osaka, T. Kohama, K. Sasaki, I. Ohtsu, N. Iwai, A. Takada, and K. Nagai. 2006. Transcriptional analysis of the Escherichia coli mreBCD genes responsible for morphogenesis and chromosome segregation. Biosci. Biotechnol. Biochem. 70: 2712-2719 https://doi.org/10.1271/bbb.60315
  49. Weinstein-Fischer, D., M. Elgrably-Weiss, and S. Altuvia. 2000. Escherichia coli response to hydrogen peroxide: A role for DNA supercoiling, topoisomerase I and Fis. Mol. Microbiol. 35: 1413-1420 https://doi.org/10.1046/j.1365-2958.2000.01805.x
  50. Wood, W. A. and I. C. Gunsalus. 1949. Serine and threonine deaminases of E. coli: Activators for a cell free enzyme. J. Biol. Chem. 181: 171-182
  51. Wu, Y. and P. Datta. 1992. Integration host factor is required for positive regulation of the tdc operon of Escherichia coli. J. Bacteriol. 174: 233-240 https://doi.org/10.1128/jb.174.1.233-240.1992
  52. Wu, Y. and P. Datta. 1995. Influence of DNA topology on expression of the tdc operon in Escherichia coli K-12. Mol. Gen. Genet. 247: 764-767 https://doi.org/10.1007/BF00290409
  53. Wu, Y., R. V. Patil, and P. Datta. 1992. Catabolite gene activator protein and integration host factor act in concert to regulate tdc operon expression in Escherichia coli. J. Bacteriol. 174: 6918- 6927 https://doi.org/10.1128/jb.174.21.6918-6927.1992
  54. Yui, Y., Y. Watanabe, S. Ito, Y. Shizuta, and O. Hayaishi. 1977. Multivalent induction of biodegradative threonine deaminase. J. Bacteriol. 132: 363-369