Browse > Article

Molecular Analysis of the Salmonella Typhimurium tdc Operon Regulation  

Kim, Min-Jeong (Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University)
Lim, Sang-Yong (Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute)
Ryu, Sang-Ryeol (Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.6, 2008 , pp. 1024-1032 More about this Journal
Abstract
Efficient expression of the Salmonella Typhimurium tdc ABCDEG operon involved in the degradation of L-serine and L-threonine requires TdcA, the transcriptional activator of the tdc operon. We found that the tdcA gene was transiently activated when the bacterial growth condition was changed from aerobic to anaerobic, but this was not observed if Salmonella was grown anaerobically from the beginning of the culture. Expression kinetics of six tdc genes after anaerobic shock demonstrated by a real-time PCR assay showed that the tdc CDEG genes were not induced in the tdcA mutant but tdcB maintained its inducibility by anaerobic shock even in the absence of tdcA, suggesting that an additional unknown transcriptional regulation may be working for the tdcB expression. We also investigated the effects of nucleoid-associated proteins by primer extension analysis and found that H-NS repressed tdcA under anaerobic shock conditions, and fis mutation delayed the peak expression time of the tdc operon. DNA microarray analysis of genes regulated by TdcA revealed that the genes involved in N-acetylmannosamine, maltose, and propanediol utilization were significantly induced in a tdcA mutant. These findings suggest that Tdc enzymes may playa pivotal role in energy metabolism under a sudden change of oxygen tension.
Keywords
Salmonella Typhimurium; tdcA; tdc operon; anaerobic shock;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
1 Bobik, T. A., G. D. Havemann, R. J. Busch, D. S. Williams, and H. C. Aldrich. 1999. The propanediol utilization (pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme $B_{12}$-dependent 1,2-propanediol degradation. J. Bacteriol. 181: 5967-5975
2 Chattopadhyay, S., Y. F. Wu, and P. Datta. 1997. Involvement of FNR and ArcA in anaerobic expression of the tdc operon of Escherichia coli. J. Bacteriol. 179: 4868-4873   DOI
3 Datta, P., T. J. Goss, J. R. Omnaas, and R. V. Patil. 1987. Covalent structure of biodegradative threonine dehydratase of Escherichia coli: Homology with other dehydratases. Proc. Natl. Acad. Sci. USA 84: 393-397
4 Dibb-Fuller, M. P., E. Allen-Vercoe, C. J. Thorns, and M. J. Woodward. 1999. Fimbriae- and flagella-mediated association with and invasion of cultured epithelial cells by Salmonella enteritidis. Microbiology 145: 1023-1031   DOI   ScienceOn
5 Goss, T. J., H. P. Schweizer, and P. Datta. 1988. Molecular characterization of the tdc operon of Escherichia coli K-12. J. Bacteriol. 170: 5352-5359   DOI
6 Hobert, E. H. and P. Datta. 1983. Synthesis of biodegradative threonine dehydratase in Escherichia coli: Role of amino acids, electron acceptors, and certain intermediary metabolites. J. Bacteriol. 155: 586-592
7 Kang, C.-H., Y.-D. Nam, W.-H. Chung, Z.-H. Quan, Y.-H. Park, S.-J. Park, R. Desmone, X.-F. Wan, and S.-K. Rhee. 2007. Relationship between genome similarity and DNA-DNA hybridization among closely related bacteria. J. Microbiol. Biotechnol. 17: 945-951   과학기술학회마을
8 Palacios, S. and J. C. Escalante-Semerena. 2000. prpR, ntrA and ihf functions are required for expression of the prpBCDE operon, encoding enzymes that catabolize propionate in Salmonella enterica serovar Typhimurium LT2. J. Bacteriol. 182: 905-910   DOI   ScienceOn
9 Schneider, R., A. Travers, and G. Muskhelishvili. 2000. The expression of the Escherichia coli fis gene is strongly dependent on the superhelical density of the DNA. Mol. Microbiol. 38: 167-175   DOI   ScienceOn
10 Wu, Y. and P. Datta. 1995. Influence of DNA topology on expression of the tdc operon in Escherichia coli K-12. Mol. Gen. Genet. 247: 764-767   DOI   ScienceOn
11 Van Dyk, T. K. and R. A. LaRossa. 1987. Involvement of ackpta operon products in a-ketobutyrate metabolism by Salmonella typhimurium. Mol. Gen. Genet. 207: 435-440   DOI   ScienceOn
12 Shizuta, Y. and O. Hayaishi. 1970. Regulation of biodegradative threonine deaminase synthesis in Escherichia coli by cyclic adenosine-3',5'-monophosphate. J. Biol. Chem. 245: 5416-5423
13 Badia, J., J. Ros, and J. Aguilar. 1985. Fermentation mechanism of fucose and rhamnose in Salmonella typhimurium and Klebsiella pneumoniae. J. Bacteriol. 161: 435-437
14 Dorman, C. J. 2004. H-NS: A universal regulator for a dynamic genome. Nat. Rev. Microbiol. 2: 391-400   DOI   ScienceOn
15 Sumantran, V. N., H. P. Schweizer, and P. Datta. 1990. A novel membrane-associated threonine permease encoded by the tdcC gene of Escherichia coli. J. Bacteriol. 172: 4288-4294   DOI
16 Schneider, R., A. Travers, and G. Muskhelishvili. 1997. FIS modulates growth phase-dependent topological transitions of DNA in Escherichia coli. Mol. Microbiol. 26: 519-530   DOI   ScienceOn
17 Wachi, M., K. Osaka, T. Kohama, K. Sasaki, I. Ohtsu, N. Iwai, A. Takada, and K. Nagai. 2006. Transcriptional analysis of the Escherichia coli mreBCD genes responsible for morphogenesis and chromosome segregation. Biosci. Biotechnol. Biochem. 70: 2712-2719   DOI   ScienceOn
18 Kim, M., S. Lim, D. Kim, H. E. Choy, and S. Ryu. A tdcA mutation causes attenuation of virulence in Salmonella enterica serovar Typhimurium. In submit
19 Lee, Y., B. Moon, J. Park, H. Chang, and W. Kim. 2007. Expression of enterotoxin genes in Staphylococcus aureus isolates based on mRNA analysis. J. Microbiol. Biotechnol. 17: 461-467   과학기술학회마을
20 Obradors, N., J. Badia, L. Baldoma, and J. Aguilar. 1988. Anaerobic metabolism of the L-rhamnose fermentation product 1,2-propanediol in Salmonella typhimurium. J. Bacteriol. 170: 2159-2162   DOI
21 Wood, W. A. and I. C. Gunsalus. 1949. Serine and threonine deaminases of E. coli: Activators for a cell free enzyme. J. Biol. Chem. 181: 171-182
22 Lim, S., K. Yong, and S. Ryu. 2005. Analysis of Salmonella pathogenicity island 1 expression in response to the changes of osmolarity. J. Microbiol. Biotechnol. 15: 175-182   과학기술학회마을
23 Keane, O. M. and C. J. Dorman. 2003. The gyr genes of Salmonella enterica serovar Typhimurium are repressed by the factor for inversion stimulation, Fis. Mol. Gen. Genomics 270: 56-65   DOI   ScienceOn
24 Livak, K. and T. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and $2^{-{\Delta}{\Delta}C_T}$ method. Methods 25: 402-408   DOI   ScienceOn
25 Drlica, K. and J. Rouviere-Yaniv. 1987. Histonelike proteins of bacteria. Microbiol. Rev. 51: 301-319
26 He$\beta$linger, C., S. A. Fairhurst, and G. Sawers. 1998. Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades Lthreonine to propionate. Mol. Microbiol. 27: 477-492   DOI
27 Schmitt, C. K., J. S. Ikeda, S. C. Darnell, P. R. Watson, J. Bispham, T. S. Wallis, D. L. Weinstein, E. S. Metcalf, and A. D. O'Brien. 2001. Absence of all components of the flagellar export and synthesis machinery differentially alters virulence of Salmonella enterica serovar Typhimurium in models of typhoid fever, survival in macrophages, tissue culture invasiveness, and calf enterocolitis. Infect. Immun. 69: 5619-5625   DOI   ScienceOn
28 Simanshu, D. K., H. S. Savithri, and M. R. N. Murthy. 2005. Crystal structures of ADP and AMPPNP-bound propionate kinase (TdcD) from Salmonella typhimurium: Comparison with members of acetate and sugar kinase/heat shock cognate 70/ actin superfamily. J. Mol. Biol. 352: 876-892   DOI   ScienceOn
29 Chan, R. K., D. Botstein, T. Watanabe, and Y. Ogata. 1972. Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. II. Properties of a high frequency transducing lysate. Virology 50: 883-898   DOI   ScienceOn
30 Hagewood, B. T., Y. L. Ganduri, and P. Datta. 1994. Functional analysis of the tdcABC promoter of Escherichia coli: Roles of TdcA and TdcR. J. Bacteriol. 176: 6214-6220   DOI
31 Lim, S., B. Kim, H.-S. Choi, Y. Lee, and S. Ryu. 2006. Fis is required for proper regulation of ssaG expression in Salmonella enterica serovar Typhimurium. Microb. Pathog. 41: 33-42   DOI   ScienceOn
32 Baek, J. and S. Lee. 2007. Transcriptome analysis of phosphate starvation response in Escherichia coli. J. Microbiol. Biotechnol. 17: 244-252   과학기술학회마을
33 Haddock, B. A. and C. W. Jones. 1977. Bacterial respiration. Bacteriol. Rev. 41: 47-99
34 Porwollik, S., R. M. Wong, R. A. Helm, K. K. Edwards, M. Calcutt, A. Eisenstark, and M. McClelland. 2004. DNA amplification and rearrangements in archival Salmonella enterica serovar Typhimurium LT2 cultures. J. Bacteriol. 186: 1678-1682   DOI   ScienceOn
35 Carsiotis, M., D. L. Weinstein, H. Karch, I. A. Holder, and A. D. O'Brien. 1984. Flagella of Salmonella typhimurium are a virulence factor in infected C57BL/6J mice. Infect. Immun. 46: 814-818
36 Ganduri, Y. L., S. R. Sadda, M. W. Datta, R. K. Jambukeswaran, and P. Datta. 1993. TdcA, a transcriptional activator of the tdcABC operon of Escherichia coli, is a member of the LysR family of proteins. Mol. Gen. Genet. 240: 395-402
37 Oh, M.-K., M.-J. Cha, S.-G. Lee, L. Rohlin, and J. C. Liao. 2006. Dynamic gene expression profiling of Escherichia coli in carbon source transition from glucose to acetate. J. Microbiol. Biotechnol. 16: 543-549   과학기술학회마을
38 Yui, Y., Y. Watanabe, S. Ito, Y. Shizuta, and O. Hayaishi. 1977. Multivalent induction of biodegradative threonine deaminase. J. Bacteriol. 132: 363-369
39 Plumbridge, J. and E. Vimr. 1999. Convergent pathways for utilization of the amino sugars N-acetylglucosamine, Nacetylmannosamine, and N-acetylneuraminic acid by Escherichia coli. J. Bacteriol. 181: 47-54
40 Schneider, R., A. Travers, T. Kutateladze, and G. Muskhelishvili. 1999. A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli. Mol. Microbiol. 34: 953-964   DOI   ScienceOn
41 Wu, Y. and P. Datta. 1992. Integration host factor is required for positive regulation of the tdc operon of Escherichia coli. J. Bacteriol. 174: 233-240   DOI
42 Burman, J. D., C. E. Stevenson, R. G. Sawers, and D. M. Lawson. 2007. The crystal structure of Escherichia coli TdcF, a member of the highly conserved YjgF/YER057c/UK114 family. BMC Struct. Biol. 7: 30   DOI
43 Wu, Y., R. V. Patil, and P. Datta. 1992. Catabolite gene activator protein and integration host factor act in concert to regulate tdc operon expression in Escherichia coli. J. Bacteriol. 174: 6918- 6927   DOI
44 Schweizer, H. P. and P. Datta. 1989. Identification and DNA sequence of tdcR, a positive regulatory gene of the tdc operon of Escherichia coli. Mol. Gen. Genet. 218: 516-522   DOI   ScienceOn
45 Ellermeier, C. D., A. Janakiraman, and J. M. Slauch. 2002. Construction of targeted single copy lac fusions using lambda Red and FLP-mediated site-specific recombination in bacteria. Gene 290: 153-161   DOI
46 Lim, S., H. Seo, H. Yoon, S. Choi, S. Heu, and S. Ryu. 2003. Molecular analysis of Salmonella enterotoxin gene expression. J. Microbiol. Biotechnol. 13: 598-606
47 Muskhelishvili, G. and A. Travers. 2003. Transcription factor as a topological homeostat. Front. Biosci. 8: d279-d285   DOI
48 Phillips, A. T., R. M. Egan, and B. Lewis. 1978. Control of biodegradative threonine dehydratase inducibility by cyclic AMP in energy-restricted Escherichia coli. J. Bacteriol. 135: 828-840
49 Weinstein-Fischer, D., M. Elgrably-Weiss, and S. Altuvia. 2000. Escherichia coli response to hydrogen peroxide: A role for DNA supercoiling, topoisomerase I and Fis. Mol. Microbiol. 35: 1413-1420   DOI   ScienceOn
50 Sawers, G. 1998. The anaerobic degradation of L-serine and Lthreonine in enterobacteria: Networks of pathways and regulatory signals. Arch. Microbiol. 171: 1-5   DOI   ScienceOn
51 Sumantran, V. N., A. J. Tranguch, and P. Datta. 1989. Increased expression of biodegradative threonine dehydratase of Escherichia coli by DNA gyrase inhibitors. FEMS Microbiol. Lett. 65: 37-40   DOI
52 Boos, W. and H. Shuman. 1998. Maltose/maltodextrin system of Escherichia coli: Transport, metabolism, and regulation. Microbiol. Mol. Biol. Rev. 62: 204-229
53 Egan, R. M. and A. T. Phillips. 1977. Requirements for induction of the biodegradative threonine dehydratase in Escherichia coli. J. Bacteriol. 132: 370-376
54 Feldman, D. A. and P. Datta. 1975. Catabolite inactivation of biodegradative threonine dehydratase of Escherichia coli. Biochemistry 14: 1760-1767   DOI   ScienceOn