• Title/Summary/Keyword: gene discovery analysis

Search Result 132, Processing Time 0.026 seconds

Automated Analysis of TDGS Image for SNP Discovery (SNP 발견을 위한 TDGS (Two-Dimensional Gene Scanning) 영상의 분석)

  • Chang, Hwan;Park, You-Na;Lee, Bog-Ju
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.238-240
    • /
    • 2003
  • 게놈 프로젝트에 의해 인간 유전자 영기서열이 밝혀지면서 개개인의 유전자에 나타나는 SNP(Single Nucleotide Polymorphism)을 분석하여 질병의 진단과 예후, 치료와 예방이 미래에 가능하게 되었다. 본 논문은 그러한 SNP 분석을 위한 자동 분석 시스템의 영상 처리 과정으로서, 기존의 육안을 통해 분석하였던 TDGS 영상을 본 시스템의 자동적인 영상 처리 과정을 통해 SNP 분석을 위한 디지털 패턴을 추출한다. SNP 분석을 위해 사용되는 샘플은 대략 수백개가 되는데, 실험이라는 특성상 영상에 나타나는 불규칙한 요소들이 많고. 영상의 상태가 좋지 않은 경우 명암도가 낮은 반점들의 구분이 힘들게 된다. 본 논문에서는 TDGS 영상의 지역적 특성을 가장 잘 반영하기 위한 동적 이진화의 새로운 척도를 제안하였고, 영상에서 잡영과 배경을 제거한 후 남겨진 관심영역을 반점으로 판별하여 이를 디지털 패턴으로 추출한 결과를 보여 준다.

  • PDF

Glucose Transport through N-Acetylgalactosamine Phosphotransferase System in Escherichia coli C Strain

  • Kim, Hyun Ju;Jeong, Haeyoung;Lee, Sang Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1047-1053
    • /
    • 2022
  • When ptsG, a glucose-specific phosphotransferase system (PTS) component, is deleted in Escherichia coli, growth can be severely poor because of the lack of efficient glucose transport. We discovered a new PTS transport system that could transport glucose through the growth-coupled experimental evolution of ptsG-deficient E. coli C strain under anaerobic conditions. Genome sequencing revealed mutations in agaR, which encodes a repressor of N-acetylgalactosamine (Aga) PTS expression in evolved progeny strains. RT-qPCR analysis showed that the expression of Aga PTS gene increased because of the loss-of-function of agaR. We confirmed the efficient Aga PTS-mediated glucose uptake by genetic complementation and anaerobic fermentation. We discussed the discovery of new glucose transporter in terms of different genetic backgrounds of E. coli strains, and the relationship between the pattern of mixed-acids fermentation and glucose transport rate.

Chlorophyll contents and expression profiles of photosynthesis-related genes in water-stressed banana plantlets

  • Sri Nanan Widiyanto;Syahril Sulaiman;Simon Duve;Erly Marwani;Husna Nugrahapraja;Diky Setya Diningrat
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.127-136
    • /
    • 2023
  • Water scarcity decreases the rate of photosynthesis and, consequently, the yield of banana plants (Musa spp). In this study, transcriptome analysis was performed to identify photosynthesis-related genes in banana plants and determine their expression profiles under water stress conditions. Banana plantlets were in vitro cultured on Murashige and Skoog agar medium with and without 10% polyethylene glycol and marked as BP10 and BK. Chlorophyll contents in the plant shoots were determined spectrophotometrically. Two cDNA libraries generated from BK and BP10 plantlets, respectively, were used as the reference for transcriptome data. Gene ontology (GO) enrichment analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) and visualized using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway prediction. Morphological observations indicated that water deficiency caused chlorosis and reduced the shoot chlorophyll content of banana plantlets. GO enrichment identified 52 photosynthesis-related genes that were affected by water stress. KEGG visualization revealed the pathways related to the 52 photosynthesisr-elated genes and their allocations in four GO terms. Four, 12, 15, and 21 genes were related to chlorophyll biosynthesis, the Calvin cycle, the photosynthetic electron transfer chain, and the light-harvesting complex, respectively. Differentially expressed gene (DEG) analysis using DESeq revealed that 45 genes were down-regulated, whereas seven genes were up-regulated. Four of the down-regulated genes were responsible for chlorophyll biosynthesis and appeared to cause the decrease in the banana leaf chlorophyll content. Among the annotated DEGs, MaPNDO, MaPSAL, and MaFEDA were selected and validated using quantitative real-time PCR.

Genes Frequently Coexpressed with Hoxc8 Provide Insight into the Discovery of Target Genes

  • Kalyani, Ruthala;Lee, Ji-Yeon;Min, Hyehyun;Yoon, Heejei;Kim, Myoung Hee
    • Molecules and Cells
    • /
    • v.39 no.5
    • /
    • pp.395-402
    • /
    • 2016
  • Identifying Hoxc8 target genes is at the crux of understanding the Hoxc8-mediated regulatory networks underlying its roles during development. However, identification of these genes remains difficult due to intrinsic factors of Hoxc8, such as low DNA binding specificity, context-dependent regulation, and unknown cofactors. Therefore, as an alternative, the present study attempted to test whether the roles of Hoxc8 could be inferred by simply analyzing genes frequently coexpressed with Hoxc8, and whether these genes include putative target genes. Using archived gene expression datasets in which Hoxc8 was differentially expressed, we identified a total of 567 genes that were positively coexpressed with Hoxc8 in at least four out of eight datasets. Among these, 23 genes were coexpressed in six datasets. Gene sets associated with extracellular matrix and cell adhesion were most significantly enriched, followed by gene sets for skeletal system development, morphogenesis, cell motility, and transcriptional regulation. In particular, transcriptional regulators, including paralogs of Hoxc8, known Hox co-factors, and transcriptional remodeling factors were enriched. We randomly selected Adam19, Ptpn13, Prkd1, Tgfbi, and Aldh1a3, and validated their coexpression in mouse embryonic tissues and cell lines following $TGF-{\beta}2$ treatment or ectopic Hoxc8 expression. Except for Aldh1a3, all genes showed concordant expression with that of Hoxc8, suggesting that the coexpressed genes might include direct or indirect target genes. Collectively, we suggest that the coexpressed genes provide a resource for constructing Hoxc8-mediated regulatory networks.

Characterizing Milk Production Related Genes in Holstein Using RNA-seq

  • Seo, Minseok;Lee, Hyun-Jeong;Kim, Kwondo;Caetano-Anolles, Kelsey;Jeong, Jin Young;Park, Sungkwon;Oh, Young Kyun;Cho, Seoae;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.343-351
    • /
    • 2016
  • Although the chemical, physical, and nutritional properties of bovine milk have been extensively studied, only a few studies have attempted to characterize milk-synthesizing genes using RNA-seq data. RNA-seq data was collected from 21 Holstein samples, along with group information about milk production ability; milk yield; and protein, fat, and solid contents. Meta-analysis was employed in order to generally characterize genes related to milk production. In addition, we attempted to investigate the relationship between milk related traits, parity, and lactation period. We observed that milk fat is highly correlated with lactation period; this result indicates that this effect should be considered in the model in order to accurately detect milk production related genes. By employing our developed model, 271 genes were significantly (false discovery rate [FDR] adjusted p-value<0.1) detected as milk production related differentially expressed genes. Of these genes, five (albumin, nitric oxide synthase 3, RNA-binding region (RNP1, RRM) containing 3, secreted and transmembrane 1, and serine palmitoyltransferase, small subunit B) were technically validated using quantitative real-time polymerase chain reaction (qRT-PCR) in order to check the accuracy of RNA-seq analysis. Finally, 83 gene ontology biological processes including several blood vessel and mammary gland development related terms, were significantly detected using DAVID gene-set enrichment analysis. From these results, we observed that detected milk production related genes are highly enriched in the circulation system process and mammary gland related biological functions. In addition, we observed that detected genes including caveolin 1, mammary serum amyloid A3.2, lingual antimicrobial peptide, cathelicidin 4 (CATHL4), cathelicidin 6 (CATHL6) have been reported in other species as milk production related gene. For this reason, we concluded that our detected 271 genes would be strong candidates for determining milk production.

Gene Discovery Analysis from Mouse Embryonic Stem Cells Based on Time Course Microarray Data

  • Suh, Young Ju;Cho, Sun A;Shim, Jung Hee;Yook, Yeon Joo;Yoo, Kyung Hyun;Kim, Jung Hee;Park, Eun Young;Noh, Ji Yeun;Lee, Seong Ho;Yang, Moon Hee;Jeong, Hyo Seok;Park, Jong Hoon
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.338-343
    • /
    • 2008
  • An embryonic stem cell is a powerful tool for investigation of early development in vitro. The study of embryonic stem cell mediated neuronal differentiation allows for improved understanding of the mechanisms involved in embryonic neuronal development. We investigated expression profile changes using time course cDNA microarray to identify clues for the signaling network of neuronal differentiation. For the short time course microarray data, pattern analysis based on the quadratic regression method is an effective approach for identification and classification of a variety of expressed genes that have biological relevance. We studied the expression patterns, at each of 5 stages, after neuronal induction at the mRNA level of embryonic stem cells using the quadratic regression method for pattern analysis. As a result, a total of 316 genes (3.1%) including 166 (1.7%) informative genes in 8 possible expression patterns were identified by pattern analysis. Among the selected genes associated with neurological system, all three genes showing linearly increasing pattern over time, and one gene showing decreasing pattern over time, were verified by RT-PCR. Therefore, an increase in gene expression over time, in a linear pattern, may be associated with embryonic development. The genes: Tcfap2c, Ttr, Wnt3a, Btg2 and Foxk1 detected by pattern analysis, and verified by RT-PCR simultaneously, may be candidate markers associated with the development of the nervous system. Our study shows that pattern analysis, using the quadratic regression method, is very useful for investigation of time course cDNA microarray data. The pattern analysis used in this study has biological significance for the study of embryonic stem cells.

MNNG-Regulated Differentially Expressed Genes that Contribute to Cancer Development in Stomach Cells (MNNG 처리에 의해 조절되는 암발생 유발 유전자의 조사)

  • Kim, Tae-Jin;Kim, Myeong-Kwan;Jung, Dongju
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.4
    • /
    • pp.353-362
    • /
    • 2021
  • Cancer is a global health problem. There are diverse types of cancers, but there are several common pathways which lead to the development of cancer. Changes in gene expression might be the most common similarity found in almost all cancers. An understanding of the underlying changes in gene expression during cancer progression could lay a valuable foundation for the development of cancer therapeutics and even cancer vaccines. In this study, a well-known carcinogen, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), was employed to induce changes in gene expression in normal stomach cells. MNNG is known to cause cancer by inducing damage to DNA in MNNG-treated mammalian cells and animals fed with this carcinogen. An analysis was performed by comparing the differentially expressed genes (DEGs) caused by MNNG treatment with DEGs in stomach cancer cell lines. To this end, methods of analysis for functional categorization and protein-protein interaction networks, such as gene ontology (GO), the database for annotation, visualization, and integrated discovery (DAVID), Kyoto encyclopedia of genes and genomics (KEGG) and search tool for the retrieval of interacting genes/proteins (STRING), were used. As a result of these analyses, MNNG-regulated specific genes and interaction networks of their protein products that contributed to stomach cancer were identified.

PubMine: An Ontology-Based Text Mining System for Deducing Relationships among Biological Entities

  • Kim, Tae-Kyung;Oh, Jeong-Su;Ko, Gun-Hwan;Cho, Wan-Sup;Hou, Bo-Kyeng;Lee, Sang-Hyuk
    • Interdisciplinary Bio Central
    • /
    • v.3 no.2
    • /
    • pp.7.1-7.6
    • /
    • 2011
  • Background: Published manuscripts are the main source of biological knowledge. Since the manual examination is almost impossible due to the huge volume of literature data (approximately 19 million abstracts in PubMed), intelligent text mining systems are of great utility for knowledge discovery. However, most of current text mining tools have limited applicability because of i) providing abstract-based search rather than sentence-based search, ii) improper use or lack of ontology terms, iii) the design to be used for specific subjects, or iv) slow response time that hampers web services and real time applications. Results: We introduce an advanced text mining system called PubMine that supports intelligent knowledge discovery based on diverse bio-ontologies. PubMine improves query accuracy and flexibility with advanced search capabilities of fuzzy search, wildcard search, proximity search, range search, and the Boolean combinations. Furthermore, PubMine allows users to extract multi-dimensional relationships between genes, diseases, and chemical compounds by using OLAP (On-Line Analytical Processing) techniques. The HUGO gene symbols and the MeSH ontology for diseases, chemical compounds, and anatomy have been included in the current version of PubMine, which is freely available at http://pubmine.kobic.re.kr. Conclusions: PubMine is a unique bio-text mining system that provides flexible searches and analysis of biological entity relationships. We believe that PubMine would serve as a key bioinformatics utility due to its rapid response to enable web services for community and to the flexibility to accommodate general ontology.

EST-based Identification of Genes Expressed in the Muscle of Olive Flounder, Paralichthys olivaceus

  • Park, Eun-Mi;Kim, Young-Ok;Nam, Bo-Hye;Kong, Hee Jeong;Kim, Woo-Jin;Lee, Sang-Jun;Choi, Tae-Jin
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.168-173
    • /
    • 2007
  • of expressed sequence tags (ESTs) is an efficient approach for gene discovery, expression profiling, and development of resources useful for functional genomics. To analyze the transcriptome of olive flounder, Paralichthys olivaceus, we have conducted EST analysis using cDNA libraries made from muscle of P. olivaceus. Redundant ESTs were assembled into overlapping contigs by using the assembly program ICAtools software. We found that the 221 ESTs were composed of 21 clusters and 35 singletons, suggesting that the overall redundancy of the library was 74.7%. Of the 221 clones, 218 clones (98.6%) were identified as known genes by BLAST searches and 3 clones (1.4%) did not match to any previously described genes. Based on major functions of their encoded proteins, the identified clones were classified into 13 broad categories. Sequence analysis of the ESTs revealed the presence of microsatellite-containing genes which may be valuable for further gene mapping studies. This study contributes to the identification of many EST clones that could be useful for genetics and developmental biology of olive flounder.

  • PDF

Emerging Genomics Technologies in Nutritional Sciences: Applications to obesity and hypertension research

  • Mouss, Naima-Moustaid;Sumithra Urs;Kim, Suyeon;Heo, Young-Ran
    • Proceedings of the Korean Nutrition Society Conference
    • /
    • 2002.05a
    • /
    • pp.29-41
    • /
    • 2002
  • While the sequencing of several genomes was underway, several advanced techniques in genetics, molecular biology and protein chemistry emerged. Within the nutritional sciences, while the focus on nutrition education, epidemiology and public health aspects remains essential; it is crucial to incorporate the new advances in gene and protein discovery in nutritional studies. Nutrition is a discipline that has always integrated social, biochemical and physiological sciences from the studies at the molecule level to studies at the population level. For this reason, nutritionists are in a prime position to readily incorporate the current genomics approaches in nutrition research, All the available analytical techniques can and should be used in modern nutritional sciences. These include genetics, genomics, proteomics and metabolomics which also require integration and use of bioinformatics and computational methods for data analysis and management. These applications will be briefly reviewed with a primary focus on what the genomics and genetics approaches offer to nutritionists. We will use one of our research focus areas to illustrate uses of some of these applications in obesity-hypertension research. Our central hypothesis is that adipose tissue is an endocrine organ that plays a major role in obesity and related hypertension. We are primarily studying the renin angiotensin system (RAS). We provide evidence from our own studies and others for the paracrine as well as endocrine role of adipocyte-derived angiotensin II in adipocyte gene expression, adiposity and blood pressure regulation. Both cell culture studies as well as knockout and transgenic mice models are used to test our hypothesis. Genomics and proteomics technologies are currently developed to complement our physiological and molecular studies on the RAS and for a fine analysis of this system and its function in health and disease.

  • PDF