Browse > Article
http://dx.doi.org/10.4014/jmb.2205.05059

Glucose Transport through N-Acetylgalactosamine Phosphotransferase System in Escherichia coli C Strain  

Kim, Hyun Ju (Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University)
Jeong, Haeyoung (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology)
Lee, Sang Jun (Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.8, 2022 , pp. 1047-1053 More about this Journal
Abstract
When ptsG, a glucose-specific phosphotransferase system (PTS) component, is deleted in Escherichia coli, growth can be severely poor because of the lack of efficient glucose transport. We discovered a new PTS transport system that could transport glucose through the growth-coupled experimental evolution of ptsG-deficient E. coli C strain under anaerobic conditions. Genome sequencing revealed mutations in agaR, which encodes a repressor of N-acetylgalactosamine (Aga) PTS expression in evolved progeny strains. RT-qPCR analysis showed that the expression of Aga PTS gene increased because of the loss-of-function of agaR. We confirmed the efficient Aga PTS-mediated glucose uptake by genetic complementation and anaerobic fermentation. We discussed the discovery of new glucose transporter in terms of different genetic backgrounds of E. coli strains, and the relationship between the pattern of mixed-acids fermentation and glucose transport rate.
Keywords
N-Acetylgalactosamine; agaR; PTS; adaptive evolution; anaerobic fermentation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Flores N, Flores S, Escalante A, de Anda R, Leal L, Malpica R, et al. 2005. Adaptation for fast growth on glucose by differential expression of central carbon metabolism and gal regulon genes in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Metab. Eng. 7: 70-87.   DOI
2 Ray WK, Larson TJ. 2004. Application of AgaR repressor and dominant repressor variants for verification of a gene cluster involved in N-acetylgalactosamine metabolism in Escherichia coli K-12. Mol. Microbiol. 51: 813-826.
3 Cherepanov PP, Wackernagel W. 1995. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158: 9-14.   DOI
4 Jahreis K, Pimentel-Schmitt EF, Bruckner R, Titgemeyer F. 2008. Ins and outs of glucose transport systems in eubacteria. FEMS Microbiol. Rev. 32: 891-907.   DOI
5 Crigler J, Bannerman-Akwei L, Cole AE, Eiteman MA, Altman E. 2018. Glucose can be transported and utilized in Escherichia coli by an altered or overproduced N-acetylglucosamine phosphotransferase system (PTS). Microbiology 164: 163-172.   DOI
6 Deutscher J, Francke C, Postma PW. 2006. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70: 939-1031.   DOI
7 Fuentes LG, Lara AR, Martinez LM, Ramirez OT, Martinez A, Bolivar F, et al. 2013. Modification of glucose import capacity in Escherichia coli: physiologic consequences and utility for improving DNA vaccine production. Microb. Cell Fact. 12: 42.   DOI
8 Death A, Ferenci T. 1993. The importance of the binding-protein-dependent Mgl system to the transport of glucose in Escherichia coli growing on low sugar concentrations. Res. Microbiol. 144: 529-537.   DOI
9 Hernandez-Montalvo V, Martinez A, Hernandez-Chavez G, Bolivar F, Valle F, Gosset G. 2003. Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol. Bioeng. 83: 687-694.   DOI
10 Lu J, Tang J, Liu Y, Zhu X, Zhang T, Zhang X. 2012. Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization. Appl. Microbiol. Biotechnol. 93: 2455-2462.   DOI
11 Kyselova L, Kreitmayer D, Kremling A, Bettenbrock K. 2018. Type and capacity of glucose transport influences succinate yield in two-stage cultivations. Microb. Cell Fact. 17: 132.   DOI
12 Zhang X, Jantama K, Moore JC, Jarboe LR, Shanmugam KT, Ingram LO. 2009. Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc. Natl. Acad. Sci. USA 106: 20180-20185.   DOI
13 Kim HJ, Jeong H, Lee SJ. 2020. Short-term adaptation modulates anaerobic metabolic flux to succinate by activating ExuT, a novel Dglucose transporter in Escherichia coli. Front. Microbiol. 11: 27.   DOI
14 Chatterjee R, Millard CS, Champion K, Clark DP, Donnelly MI. 2001. Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl. Environ. Microbiol. 67: 148-154.   DOI
15 Death A, Ferenci T. 1994. Between feast and famine: endogenous inducer synthesis in the adaptation of Escherichia coli to growth with limiting carbohydrates. J. Bacteriol. 176: 5101-5107.   DOI
16 Guan L, Kaback HR. 2013. Glucose/Sugar Transport in Bacteria, pp. 387-390. In Lennarz WJ, Lane MD (eds.), Encyclopedia of Biological Chemistry, Second Ed. Elsevier, Oxford
17 Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2: 2006.0008.   DOI
18 Kim HJ, Hou BK, Lee SG, Kim JS, Lee DW, Lee SJ. 2013. Genome-wide analysis of redox reactions reveals metabolic engineering targets for D-lactate overproduction in Escherichia coli. Metab. Eng. 18: 44-52.   DOI
19 Reizer J, Ramseier TM, Reizer A, Charbit A, Saier MH. 1996. Novel phosphotransferase genes revealed by bacterial genome sequencing: a gene cluster encoding a putative N-acetylgalactosamine metabolic pathway in Escherichia coli. Microbiology 142 (Pt 2): 231-250.   DOI
20 Hu Z, Patel IR, Mukherjee A. 2013. Genetic analysis of the roles of agaA, agaI, and agaS genes in the N-acetyl-D-galactosamine and D-galactosamine catabolic pathways in Escherichia coli strains O157:H7 and C. BMC Microbiol. 13: 94.   DOI
21 Begley GS, Hansen DE, Jacobson GR, Knowles JR. 1982. Stereochemical course of the reactions catalyzed by the bacterial phosphoenolpyruvate:glucose phosphotransferase system. Biochemistry 21: 5552-5556.   DOI
22 Curtis SJ, Epstein W. 1975. Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase. J. Bacteriol. 122: 1189-1199.   DOI
23 Liang Q, Zhang F, Li Y, Zhang X, Li J, Yang P, et al. 2015. Comparison of individual component deletions in a glucose-specific phosphotransferase system revealed their different applications. Sci. Rep. 5: 13200.   DOI
24 Brinkkotter A, Kloss H, Alpert C, Lengeler JW. 2000. Pathways for the utilization of N-acetyl-galactosamine and galactosamine in Escherichia coli. Mol. Microbiol. 37: 125-135.   DOI
25 Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645.   DOI
26 Alva A, Sabido-Ramos A, Escalante A, Bolivar F. 2020. New insights into transport capability of sugars and its impact on growth from novel mutants of Escherichia coli. Appl. Microbiol. Biotechnol. 104: 1463-1479.   DOI
27 Gutknecht R, Flukiger K, Lanz R, Erni B. 1999. Mechanism of phosphoryl transfer in the dimeric IIABMan subunit of the Escherichia coli mannose transporter. J. Biol. Chem. 274: 6091-6096.   DOI