• Title/Summary/Keyword: gene discovery analysis

Search Result 132, Processing Time 0.037 seconds

Differential expression of microRNAs in the saliva of patients with aggressive periodontitis: a pilot study of potential biomarkers for aggressive periodontitis

  • Lee, Nam-Hun;Lee, Eunhye;Kim, Young-Sung;Kim, Won-Kyung;Lee, Young-Kyoo;Kim, Su-Hwan
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.5
    • /
    • pp.281-290
    • /
    • 2020
  • Purpose: The aim of this study was to compare microRNA (miRNA) gene expression in saliva using miRNA polymerase chain reaction (PCR) arrays in healthy and aggressive periodontitis (AP) patients. Methods: PCR arrays of 84 miRNAs related to the human inflammatory response and autoimmunity from the saliva samples of 4 patients with AP and 4 healthy controls were performed. The functions and diseases related to the miRNAs were obtained using TAM 2.0. Experimentally validated targets of differentially expressed miRNAs were obtained from mirTarBase. Gene ontology terms and pathways were analyzed using ConsensusPathDB. Results: Four downregulated miRNAs (hsa-let-7a-5p, hsa-let-7f-5p, hsa-miR-181b-5p, and hsa-miR-23b-3p) were identified in patients with AP. These miRNAs are associated with cell death and innate immunity, and they target genes associated with osteoclast development and function. Conclusions: This study is the first analysis of miRNAs in the saliva of patients with AP. Identifying discriminatory human salivary miRNA biomarkers reflective of periodontal disease in a non-invasive screening assay is crucial for the development of salivary diagnostics. These data provide a first step towards the discovery of key salivary miRNA biomarkers for AP.

Evaluation of Durum Wheat Genotypes for Resistance against Root Rot Disease Caused by Moroccan Fusarium culmorum Isolates

  • Bouarda, Jamila;Bassi, Filippo M.;Wallwork, Hugh;Benchacho, Mohammed;Labhilili, Mustapha;Maafa, Ilyass;El Aissami, Aicha;Bentata, Fatiha
    • The Plant Pathology Journal
    • /
    • v.38 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • Fusarium culmorum is one of the most important causal agents of root rot of wheat. In this study, 10 F. culmorum isolates were collected from farms located in five agro-ecological regions of Morocco. These were used to challenge 20 durum wheat genotypes via artificial inoculation of plant roots under controlled conditions. The isolate virulence was determined by three traits (roots browning index, stem browning index, and severity of root rot). An alpha-lattice design with three replicates was used, and the resulting ANOVA revealed a significant (P < 0.01) effect of isolate (I), genotype (G), and G × I interaction. A total of four response types were observed (R, MR, MS, and S) revealing that different genes in both the pathogen and the host were activated in 53% of interactions. Most genotypes were susceptible to eight or more isolates, while the Moroccan cultivar Marouan was reported resistant to three isolates and moderately resistant to three others. Similarly, the Australian breeding line SSD1479-117 was reported resistant to two isolates and moderately resistant to four others. The ICARDA elites Icaverve, Berghisyr, Berghisyr2, Amina, and Icaverve2 were identified as moderately resistant. Principal component analysis based on the genotypes responses defined two major clusters and two sub-clusters for the 10 F. culmorum isolates. Isolate Fc9 collected in Khemis Zemamra was the most virulent while isolate Fc3 collected in Haj-Kaddour was the least virulent. This work provides initial results for the discovery of differential reactions between the durum lines and isolates and the identification of novel sources of resistance.

Characterization and Cofactor Binding Mechanism of a Novel NAD(P)H-Dependent Aldehyde Reductase from Klebsiella pneumoniae DSM2026

  • Ma, Cheng-Wei;Zhang, Le;Dai, Jian-Ying;Xiu, Zhi-Long
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1699-1707
    • /
    • 2013
  • During the fermentative production of 1,3-propanediol under high substrate concentrations, accumulation of intracellular 3-hydroxypropionaldehyde will cause premature cessation of cell growth and glycerol consumption. Discovery of oxidoreductases that can convert 3-hydroxypropionaldehyde to 1,3-propanediol using NADPH as cofactor could serve as a solution to this problem. In this paper, the yqhD gene from Klebsiella pneumoniae DSM2026, which was found encoding an aldehyde reductase (KpAR), was cloned and characterized. KpAR showed broad substrate specificity under physiological direction, whereas no catalytic activity was detected in the oxidation direction, and both NADPH and NADH can be utilized as cofactors. The cofactor binding mechanism was then investigated employing homology modeling and molecular dynamics simulations. Hydrogen-bond analysis showed that the hydrogen-bond interactions between KpAR and NADPH are much stronger than that for NADH. Free-energy decomposition dedicated that residues Gly37 to Val41 contribute most to the cofactor preference through polar interactions. In conclusion, this work provides a novel aldehyde reductase that has potential applications in the development of novel genetically engineered strains in the 1,3-propanediol industry, and gives a better understanding of the mechanisms involved in cofactor binding.

An EST-based approach for identifying genes expressed in the gills of olive flounder Paralichthys olivaceus

  • Lee, Jeong-Ho;Noh, Jae-Koo;Kim, Hyun-Chul;Park, Choul-Ji;Min, Byung-Hwa;Kim, Young-Ok;Kim, Jong-Hyun;Kim, Kyung-Kil;Kim, Woo-Jin;Myeong, Jeong-In
    • Journal of fish pathology
    • /
    • v.22 no.3
    • /
    • pp.383-389
    • /
    • 2009
  • Analysis of expressed sequence tags (ESTs) is an efficient approach for gene discovery, expression profiling, and development of resources useful for functional genomics studies. As part of studies on the immune system of olive flounder, a total of 251 EST sequences from gill cDNA library were generated to identify and characterize important genes in the immune machanisms of olive flounder. Of the 251 clones, 126 clones (50.2%) were identified as orthologues of known genes from olive flounder and other organisms. Among the 126 EST clones, 16 clones (12.7%) were representing 9 unique genes identified as homologous to the previously reported olive flounder ESTs, 100 clones (79.4%) representing 103unique genes were identified as orthologs of known genes from other organisms. We also identified several kinds of immune associated proteins, indicating EST as a powerful method for identifying immune related genes of fish as well as identifying novel genes. Further studies using cDNA microarrays are needed to identify the differentially expressed transcripts after disease infection.

Discovery of Two New Talaromyces Species from Crop Field Soil in Korea

  • Adhikari, Mahesh;Yadav, Dil Raj;Kim, Sangwoo;Um, Yong Hyun;Kim, Hyung Seung;Lee, Hyang Burm;Lee, Youn Su
    • Mycobiology
    • /
    • v.43 no.4
    • /
    • pp.402-407
    • /
    • 2015
  • Two new fungal species of the genus Talaromyces, Talaromyces purpurogenus and Talaromyces trachyspermus from the Trichocomaceae family, were recovered during an investigation of fungal communities in soil collected from the Gangwon-do and Jeollanam-do provinces of Korea. These two species have not been previously officially reported from Korea. In this study, detailed descriptions of internal transcribed spacer rDNA and beta-tubulin gene regions of these two fungi are presented. Morphological features of the two fungi in five agar media, potato dextrose, oatmeal, malt extract, czapek yeast extract, and yeast extract sucrose, are also reported. The species were identified on the basis of molecular and morphological analysis, and herein we present data with detailed descriptions and figures.

Discovery of Anticancer Activity of Amentoflavone on Esophageal Squamous Cell Carcinoma: Bioinformatics, Structure-Based Virtual Screening, and Biological Evaluation

  • Chen, Lei;Fang, Bo;Qiao, Liman;Zheng, Yihui
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.718-729
    • /
    • 2022
  • Esophageal squamous cell carcinoma (ESCC) is the most common primary esophageal malignancy with poor prognosis. Here, due to the necessity for exploring potential therapies against ESCC, we obtained the gene expression data on ESCC from the TCGA and GEO databases. Venn diagram analysis was applied to identify common targets. The protein-protein interaction network was constructed by Cytoscape software, and the hub targets were extracted from the network via cytoHubba. The potential hub nodes as drug targets were found by pharmacophore-based virtual screening and molecular modeling, and the antitumor activity was evaluated through in vitro studies. A total of 364 differentially expressed genes (DEGs) in ESCC were identified. Pathway enrichment analyses suggested that most DEGs were mainly involved in the cell cycle. Three hub targets were retrieved, including CENPF, CCNA2 (cyclin A), and CCNB1 (cyclin B1), which were highly expressed in esophageal cancer and associated with prognosis. Moreover, amentoflavone, a promising drug candidate found by pharmacophore-based virtual screening, showed antiproliferative and proapoptotic effects and induced G1 in esophageal squamous carcinoma cells. Taken together, our findings suggested that amentoflavone could be a potential cell cycle inhibitor targeting cyclin B1, and is therefore expected to serve as a great therapeutic agent for treating esophageal squamous cell carcinoma.

Diversity of the Bambusicolous Fungus Apiospora in Korea: Discovery of New Apiospora Species

  • Sun Lul Kwon;Minseo Cho;Young Min Lee;Hanbyul Lee;Changmu Kim;Gyu-Hyeok Kim;Jae-Jin Kim
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.302-316
    • /
    • 2022
  • Many Apiospora species have been isolated from bamboo plants - to date, 34 bambusicolous Apiospora species have been recorded. They are known as saprophytes, endophytes, and plant pathogens. In this study, 242 bambusicolous Apiospora were isolated from various bamboo materials (branches, culms, leaves, roots, and shoots) and examined using DNA sequence similarity based on the internal transcribed spacer, 28S large subunit ribosomal RNA gene, translation elongation factor 1-alpha, and beta-tubulin regions. Nine Apiospora species (Ap. arundinis, Ap. camelliae-sinensis, Ap. hysterina, Ap. lageniformis sp. nov., Ap. paraphaeosperma, Ap. pseudohyphopodii sp. nov., Ap. rasikravindrae, Ap. saccharicola, and Ap. sargassi) were identified via molecular analysis. Moreover, the highest diversity of Apiospora was found in culms, and the most abundant species was Ap. arundinis. Among the nine Apiospora species, two (Ap. hysterina and Ap. paraphaeosperma) were unrecorded in Korea, and the other two species (Ap. lageniformis sp. nov. and Ap. pseudohyphopodii sp. nov.) were potentially novel species. Here, we describe the diversity of bambusicolous Apiospora species in bamboo organs, construct a multi-locus phylogenetic tree, and delineate morphological features of new bambusicolous Apiospora in Korea.

Functional annotation of uncharacterized proteins from Fusobacterium nucleatum: identification of virulence factors

  • Kanchan Rauthan;Saranya Joshi;Lokesh Kumar;Divya Goel;Sudhir Kumar
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.21.1-21.14
    • /
    • 2023
  • Fusobacterium nucleatum is a gram-negative bacteria associated with diverse infections like appendicitis and colorectal cancer. It mainly attacks the epithelial cells in the oral cavity and throat of the infected individual. It has a single circular genome of 2.7 Mb. Many proteins in F. nucleatum genome are listed as "Uncharacterized." Annotation of these proteins is crucial for obtaining new facts about the pathogen and deciphering the gene regulation, functions, and pathways along with discovery of novel target proteins. In the light of new genomic information, an armoury of bioinformatic tools were used for predicting the physicochemical parameters, domain and motif search, pattern search, and localization of the uncharacterized proteins. The programs such as receiver operating characteristics determine the efficacy of the databases that have been employed for prediction of different parameters at 83.6%. Functions were successfully assigned to 46 uncharacterized proteins which included enzymes, transporter proteins, membrane proteins, binding proteins, etc. Apart from the function prediction, the proteins were also subjected to string analysis to reveal the interacting partners. The annotated proteins were also put through homology-based structure prediction and modeling using Swiss PDB and Phyre2 servers. Two probable virulent factors were also identified which could be investigated further for potential drug-related studies. The assigning of functions to uncharacterized proteins has shown that some of these proteins are important for cell survival inside the host and can act as effective drug targets.

Regulation of Pipernonaline on Biological Functions of Human Prostate Cancer Cells Based on Microarray Analysis (Microarray를 이용한 pipernonaline의 인간 전립선 암세포에 대한 기능 조절 분석)

  • Kim, Sang-Hun;Kim, Kwang-Youn;Yu, Sun-Nyoung;Park, Seul-Ki;Kwak, In-Seok;Rhee, Moon-Soo;Bang, Byung-Ho;Chun, Sung-Sik;Ahn, Soon-Cheol
    • Journal of Life Science
    • /
    • v.22 no.11
    • /
    • pp.1552-1557
    • /
    • 2012
  • It has been reported that pipernonaline isolated from Piper longum Linn. has a wide biochemical and pharmacological effect, including antitumor activity in prostate cancer PC-3 cells. However, its mechanism and expression pattern of many genes involved in biological functions are not clearly understood. To perform the gene expression study in PC-3 cells treated with pipernonaline, a cDNA microarray chip composed of 44,000 human cDNA probes was used. As a result, cell cycle-related genes, apoptosis-related genes, and cell proliferation/growth-related genes have been identified in gene ontology of the DAVID database. These results suggest that pipernonaline has antitumor activity by regulating the expression pattern of genes involved in biological signaling pathway in prostate cancer PC-3 cells. Further, additional analysis of these microarray data can be a useful tool to identify the mechanism and discovery of novel genes in cancer therapy.

Network pharmacological analysis for exploration of the potential application of Hwangryunhaedok-tang for brain diseases (황련해독탕(黃連解毒湯)의 뇌질환 응용 가능성 탐색을 위한 네트워크 약리학적 분석)

  • Lee, Se-Eun;Lim, Jae-Yu;Chung, Byung-Woo;Lee, Byoungho;Lim, Jung Hwa;Cho, Suin
    • Herbal Formula Science
    • /
    • v.28 no.4
    • /
    • pp.313-325
    • /
    • 2020
  • Objectives : To explore the associated potential pathways and molecular targets of Hwangryunhaedok-tang(HHT) by the approaches of network pharmacology and bioinformatics in traditional chinese medicine(TCM). Methods : Hwangryunhaedok-tang constituent drugs(Coptidis Rhizoma, CR; Scutellariae Radix, SR; Phellodendri Cortex, PC; Gardeniae Fructus, GF) and their processing types were searched from TCM systems pharmacology(TCMSP). The databases of TCMSP, Kyoto Encyclopedia of Genes and Genomes(KEGG), MCODE and STRING were used to gather information. The network of bioactive ingredients and target gene was constructed by Cytoscape software(version 3.8). Results : A total of 94 HHT active compounds(CR, 12; SR, 35; PC, 33; GF, 14, respectively) were found, and HHT were identified by TCMSP. Applications of KEGG and MCODE analysis indicates that total of 6 bioactive ingredients in the top 10% ranking were obtained and 32 diseases of HHT were screened. The molecular pathway analysis revealed that HHT exerts cancer, inflammation and cerebrovascular diseases effects by acting on several signaling pathway. In addition, HHT found that three genes(e.g. SPIN1, TRIM25, and APP) correlate with the aforementioned diseases. Conclusions : This study showed that network pharmacology analysis is useful to elucidate the complex mechanisms of action of HHT.